Effectiveness of Random Search in SVM hyper-parameter tuning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/161237 |
Resumo: | Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost. |
id |
UNSP_b04f2ab38c84e07262b80b46f691b15f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161237 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Effectiveness of Random Search in SVM hyper-parameter tuningClassification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost.Univ Sao Paulo, Sao Carlos, SP, BrazilUniv Estadual Paulista UNESP, Itapeva, SP, BrazilEindhoven Univ Technol TV E, Eindhoven, NetherlandsUniv Munich, D-81377 Munich, GermanyUniv Estadual Paulista UNESP, Itapeva, SP, BrazilIeeeUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Eindhoven Univ Technol TV EUniv MunichMantovani, Rafael G.Rossi, Andre L. D. [UNESP]Vanschoren, JoaquinBischl, BerndCarvalho, Andre C. P. L. F. deIEEE2018-11-26T16:26:29Z2018-11-26T16:26:29Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8application/pdf2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015.2161-4393http://hdl.handle.net/11449/161237WOS:000370730602099WOS000370730602099.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2015 International Joint Conference On Neural Networks (ijcnn)info:eu-repo/semantics/openAccess2024-01-26T06:32:32Zoai:repositorio.unesp.br:11449/161237Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:10.038612Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title |
Effectiveness of Random Search in SVM hyper-parameter tuning |
spellingShingle |
Effectiveness of Random Search in SVM hyper-parameter tuning Mantovani, Rafael G. |
title_short |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_full |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_fullStr |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_full_unstemmed |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_sort |
Effectiveness of Random Search in SVM hyper-parameter tuning |
author |
Mantovani, Rafael G. |
author_facet |
Mantovani, Rafael G. Rossi, Andre L. D. [UNESP] Vanschoren, Joaquin Bischl, Bernd Carvalho, Andre C. P. L. F. de IEEE |
author_role |
author |
author2 |
Rossi, Andre L. D. [UNESP] Vanschoren, Joaquin Bischl, Bernd Carvalho, Andre C. P. L. F. de IEEE |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Eindhoven Univ Technol TV E Univ Munich |
dc.contributor.author.fl_str_mv |
Mantovani, Rafael G. Rossi, Andre L. D. [UNESP] Vanschoren, Joaquin Bischl, Bernd Carvalho, Andre C. P. L. F. de IEEE |
description |
Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-11-26T16:26:29Z 2018-11-26T16:26:29Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015. 2161-4393 http://hdl.handle.net/11449/161237 WOS:000370730602099 WOS000370730602099.pdf |
identifier_str_mv |
2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015. 2161-4393 WOS:000370730602099 WOS000370730602099.pdf |
url |
http://hdl.handle.net/11449/161237 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2015 International Joint Conference On Neural Networks (ijcnn) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 application/pdf |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129574743048192 |