Effectiveness of Random Search in SVM hyper-parameter tuning

Detalhes bibliográficos
Autor(a) principal: Mantovani, Rafael G.
Data de Publicação: 2015
Outros Autores: Rossi, Andre L. D. [UNESP], Vanschoren, Joaquin, Bischl, Bernd, Carvalho, Andre C. P. L. F. de, IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/161237
Resumo: Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost.
id UNSP_b04f2ab38c84e07262b80b46f691b15f
oai_identifier_str oai:repositorio.unesp.br:11449/161237
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Effectiveness of Random Search in SVM hyper-parameter tuningClassification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost.Univ Sao Paulo, Sao Carlos, SP, BrazilUniv Estadual Paulista UNESP, Itapeva, SP, BrazilEindhoven Univ Technol TV E, Eindhoven, NetherlandsUniv Munich, D-81377 Munich, GermanyUniv Estadual Paulista UNESP, Itapeva, SP, BrazilIeeeUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Eindhoven Univ Technol TV EUniv MunichMantovani, Rafael G.Rossi, Andre L. D. [UNESP]Vanschoren, JoaquinBischl, BerndCarvalho, Andre C. P. L. F. deIEEE2018-11-26T16:26:29Z2018-11-26T16:26:29Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8application/pdf2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015.2161-4393http://hdl.handle.net/11449/161237WOS:000370730602099WOS000370730602099.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2015 International Joint Conference On Neural Networks (ijcnn)info:eu-repo/semantics/openAccess2024-01-26T06:32:32Zoai:repositorio.unesp.br:11449/161237Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:02:10.038612Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Effectiveness of Random Search in SVM hyper-parameter tuning
title Effectiveness of Random Search in SVM hyper-parameter tuning
spellingShingle Effectiveness of Random Search in SVM hyper-parameter tuning
Mantovani, Rafael G.
title_short Effectiveness of Random Search in SVM hyper-parameter tuning
title_full Effectiveness of Random Search in SVM hyper-parameter tuning
title_fullStr Effectiveness of Random Search in SVM hyper-parameter tuning
title_full_unstemmed Effectiveness of Random Search in SVM hyper-parameter tuning
title_sort Effectiveness of Random Search in SVM hyper-parameter tuning
author Mantovani, Rafael G.
author_facet Mantovani, Rafael G.
Rossi, Andre L. D. [UNESP]
Vanschoren, Joaquin
Bischl, Bernd
Carvalho, Andre C. P. L. F. de
IEEE
author_role author
author2 Rossi, Andre L. D. [UNESP]
Vanschoren, Joaquin
Bischl, Bernd
Carvalho, Andre C. P. L. F. de
IEEE
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Eindhoven Univ Technol TV E
Univ Munich
dc.contributor.author.fl_str_mv Mantovani, Rafael G.
Rossi, Andre L. D. [UNESP]
Vanschoren, Joaquin
Bischl, Bernd
Carvalho, Andre C. P. L. F. de
IEEE
description Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using metaheuristics and Grid Search, but with a lower computational cost.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-11-26T16:26:29Z
2018-11-26T16:26:29Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015.
2161-4393
http://hdl.handle.net/11449/161237
WOS:000370730602099
WOS000370730602099.pdf
identifier_str_mv 2015 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2015.
2161-4393
WOS:000370730602099
WOS000370730602099.pdf
url http://hdl.handle.net/11449/161237
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2015 International Joint Conference On Neural Networks (ijcnn)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8
application/pdf
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129574743048192