Effectiveness of Random Search in SVM hyper-parameter tuning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IJCNN.2015.7280664 http://hdl.handle.net/11449/168228 |
Resumo: | Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost. |
id |
UNSP_b1e9242c511600654f657de0da15d4fb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/168228 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Effectiveness of Random Search in SVM hyper-parameter tuningAccuracyBlogsComputational modelingHeatingLeadSupport vector machinesTrainingClassification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost.Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Eindhoven University of Technology (TU/e)Ludwig-Maximilians-University MunichUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Eindhoven University of Technology (TU/e)Ludwig-Maximilians-University MunichMantovani, Rafael G.Rossi, André L. D. [UNESP]Vanschoren, JoaquinBischl, BerndDe Carvalho, André C.P.L.F.2018-12-11T16:40:20Z2018-12-11T16:40:20Z2015-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IJCNN.2015.7280664Proceedings of the International Joint Conference on Neural Networks, v. 2015-September.http://hdl.handle.net/11449/16822810.1109/IJCNN.2015.72806642-s2.0-84950992668Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2021-10-23T21:47:01Zoai:repositorio.unesp.br:11449/168228Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:15:44.964597Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title |
Effectiveness of Random Search in SVM hyper-parameter tuning |
spellingShingle |
Effectiveness of Random Search in SVM hyper-parameter tuning Mantovani, Rafael G. Accuracy Blogs Computational modeling Heating Lead Support vector machines Training |
title_short |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_full |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_fullStr |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_full_unstemmed |
Effectiveness of Random Search in SVM hyper-parameter tuning |
title_sort |
Effectiveness of Random Search in SVM hyper-parameter tuning |
author |
Mantovani, Rafael G. |
author_facet |
Mantovani, Rafael G. Rossi, André L. D. [UNESP] Vanschoren, Joaquin Bischl, Bernd De Carvalho, André C.P.L.F. |
author_role |
author |
author2 |
Rossi, André L. D. [UNESP] Vanschoren, Joaquin Bischl, Bernd De Carvalho, André C.P.L.F. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Eindhoven University of Technology (TU/e) Ludwig-Maximilians-University Munich |
dc.contributor.author.fl_str_mv |
Mantovani, Rafael G. Rossi, André L. D. [UNESP] Vanschoren, Joaquin Bischl, Bernd De Carvalho, André C.P.L.F. |
dc.subject.por.fl_str_mv |
Accuracy Blogs Computational modeling Heating Lead Support vector machines Training |
topic |
Accuracy Blogs Computational modeling Heating Lead Support vector machines Training |
description |
Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-28 2018-12-11T16:40:20Z 2018-12-11T16:40:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IJCNN.2015.7280664 Proceedings of the International Joint Conference on Neural Networks, v. 2015-September. http://hdl.handle.net/11449/168228 10.1109/IJCNN.2015.7280664 2-s2.0-84950992668 |
url |
http://dx.doi.org/10.1109/IJCNN.2015.7280664 http://hdl.handle.net/11449/168228 |
identifier_str_mv |
Proceedings of the International Joint Conference on Neural Networks, v. 2015-September. 10.1109/IJCNN.2015.7280664 2-s2.0-84950992668 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the International Joint Conference on Neural Networks |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129410872639488 |