Effectiveness of Random Search in SVM hyper-parameter tuning

Detalhes bibliográficos
Autor(a) principal: Mantovani, Rafael G.
Data de Publicação: 2015
Outros Autores: Rossi, André L. D. [UNESP], Vanschoren, Joaquin, Bischl, Bernd, De Carvalho, André C.P.L.F.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IJCNN.2015.7280664
http://hdl.handle.net/11449/168228
Resumo: Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost.
id UNSP_b1e9242c511600654f657de0da15d4fb
oai_identifier_str oai:repositorio.unesp.br:11449/168228
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Effectiveness of Random Search in SVM hyper-parameter tuningAccuracyBlogsComputational modelingHeatingLeadSupport vector machinesTrainingClassification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost.Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Eindhoven University of Technology (TU/e)Ludwig-Maximilians-University MunichUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Eindhoven University of Technology (TU/e)Ludwig-Maximilians-University MunichMantovani, Rafael G.Rossi, André L. D. [UNESP]Vanschoren, JoaquinBischl, BerndDe Carvalho, André C.P.L.F.2018-12-11T16:40:20Z2018-12-11T16:40:20Z2015-09-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IJCNN.2015.7280664Proceedings of the International Joint Conference on Neural Networks, v. 2015-September.http://hdl.handle.net/11449/16822810.1109/IJCNN.2015.72806642-s2.0-84950992668Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Neural Networksinfo:eu-repo/semantics/openAccess2021-10-23T21:47:01Zoai:repositorio.unesp.br:11449/168228Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:15:44.964597Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Effectiveness of Random Search in SVM hyper-parameter tuning
title Effectiveness of Random Search in SVM hyper-parameter tuning
spellingShingle Effectiveness of Random Search in SVM hyper-parameter tuning
Mantovani, Rafael G.
Accuracy
Blogs
Computational modeling
Heating
Lead
Support vector machines
Training
title_short Effectiveness of Random Search in SVM hyper-parameter tuning
title_full Effectiveness of Random Search in SVM hyper-parameter tuning
title_fullStr Effectiveness of Random Search in SVM hyper-parameter tuning
title_full_unstemmed Effectiveness of Random Search in SVM hyper-parameter tuning
title_sort Effectiveness of Random Search in SVM hyper-parameter tuning
author Mantovani, Rafael G.
author_facet Mantovani, Rafael G.
Rossi, André L. D. [UNESP]
Vanschoren, Joaquin
Bischl, Bernd
De Carvalho, André C.P.L.F.
author_role author
author2 Rossi, André L. D. [UNESP]
Vanschoren, Joaquin
Bischl, Bernd
De Carvalho, André C.P.L.F.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Eindhoven University of Technology (TU/e)
Ludwig-Maximilians-University Munich
dc.contributor.author.fl_str_mv Mantovani, Rafael G.
Rossi, André L. D. [UNESP]
Vanschoren, Joaquin
Bischl, Bernd
De Carvalho, André C.P.L.F.
dc.subject.por.fl_str_mv Accuracy
Blogs
Computational modeling
Heating
Lead
Support vector machines
Training
topic Accuracy
Blogs
Computational modeling
Heating
Lead
Support vector machines
Training
description Classification is one of the most common machine learning tasks. SVMs have been frequently applied to this task. In general, the values chosen for the hyper-parameters of SVMs affect the performance of their induced predictive models. Several studies use optimization techniques to find a set of hyper-parameter values that induces classifiers with good predictive performance. This paper investigates the hypothesis that a simple Random Search method is sufficient to adjust the hyper-parameters of SVMs. A set of experiments compared the performance of five tuning techniques: three meta-heuristics commonly used, Random Search and Grid Search. The experimental results show that the predictive performance of models using Random Search is equivalent to those obtained using meta-heuristics and Grid Search, but with a lower computational cost.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-28
2018-12-11T16:40:20Z
2018-12-11T16:40:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IJCNN.2015.7280664
Proceedings of the International Joint Conference on Neural Networks, v. 2015-September.
http://hdl.handle.net/11449/168228
10.1109/IJCNN.2015.7280664
2-s2.0-84950992668
url http://dx.doi.org/10.1109/IJCNN.2015.7280664
http://hdl.handle.net/11449/168228
identifier_str_mv Proceedings of the International Joint Conference on Neural Networks, v. 2015-September.
10.1109/IJCNN.2015.7280664
2-s2.0-84950992668
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the International Joint Conference on Neural Networks
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129410872639488