Fractal descriptors for discrimination of microscopy images of plant leaves

Detalhes bibliográficos
Autor(a) principal: Silva, N. R.
Data de Publicação: 2014
Outros Autores: Florindo, J. B., Gómez, M. C., Kolb, Rosana Marta [UNESP], Bruno, O. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://iopscience.iop.org/1742-6596/490/1/012085/
http://hdl.handle.net/11449/127107
Resumo: This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.
id UNSP_bdc984faf775d77982d867bd8ca7e229
oai_identifier_str oai:repositorio.unesp.br:11449/127107
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fractal descriptors for discrimination of microscopy images of plant leavesThis study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.Institute of Mathematics and Computer Science, University of SãO Paulo (USP), Avenida Trabalhador são-carlense, 400 13566-590 SãO Carlos, SãO Paulo, BrazilScientific Computing Group, SãO Carlos Institute of Physics, University of SãO Paulo (USP), cx 369 13560-970 SãO Carlos, SãO Paulo, BrazilDepartment of Physics, Faculty of Biochemistry and Biological Sciences, National University of Littoral, S3000ZAA Santa Fe, ArgentinaUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Letras de Assis, Assis, Av. Dom Antônio, 2100, Depto de Ciências Biológicas, Parque Universitário, CEP 19806-900, SP, BrasilDepartment of Biological Sciences, Faculty of Sciences and Letters, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP. Av. Dom Antônio, 2100, 19806-900, Assis, BrazilUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Universidad Nacional del LitoralSilva, N. R.Florindo, J. B.Gómez, M. C.Kolb, Rosana Marta [UNESP]Bruno, O. M.2015-08-21T17:53:55Z2015-08-21T17:53:55Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12085http://iopscience.iop.org/1742-6596/490/1/012085/Journal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014.1742-6596http://hdl.handle.net/11449/12710710.1088/1742-6596/490/1/01208595489629112405010000-0003-3841-5597Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics. Conference Series0,241info:eu-repo/semantics/openAccess2024-06-13T17:38:04Zoai:repositorio.unesp.br:11449/127107Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:50:36.602237Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fractal descriptors for discrimination of microscopy images of plant leaves
title Fractal descriptors for discrimination of microscopy images of plant leaves
spellingShingle Fractal descriptors for discrimination of microscopy images of plant leaves
Silva, N. R.
title_short Fractal descriptors for discrimination of microscopy images of plant leaves
title_full Fractal descriptors for discrimination of microscopy images of plant leaves
title_fullStr Fractal descriptors for discrimination of microscopy images of plant leaves
title_full_unstemmed Fractal descriptors for discrimination of microscopy images of plant leaves
title_sort Fractal descriptors for discrimination of microscopy images of plant leaves
author Silva, N. R.
author_facet Silva, N. R.
Florindo, J. B.
Gómez, M. C.
Kolb, Rosana Marta [UNESP]
Bruno, O. M.
author_role author
author2 Florindo, J. B.
Gómez, M. C.
Kolb, Rosana Marta [UNESP]
Bruno, O. M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de São Paulo (USP)
Universidad Nacional del Litoral
dc.contributor.author.fl_str_mv Silva, N. R.
Florindo, J. B.
Gómez, M. C.
Kolb, Rosana Marta [UNESP]
Bruno, O. M.
description This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.
publishDate 2014
dc.date.none.fl_str_mv 2014
2015-08-21T17:53:55Z
2015-08-21T17:53:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://iopscience.iop.org/1742-6596/490/1/012085/
Journal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014.
1742-6596
http://hdl.handle.net/11449/127107
10.1088/1742-6596/490/1/012085
9548962911240501
0000-0003-3841-5597
url http://iopscience.iop.org/1742-6596/490/1/012085/
http://hdl.handle.net/11449/127107
identifier_str_mv Journal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014.
1742-6596
10.1088/1742-6596/490/1/012085
9548962911240501
0000-0003-3841-5597
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Physics. Conference Series
0,241
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12085
dc.source.none.fl_str_mv Currículo Lattes
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128424325152768