Fractal descriptors for discrimination of microscopy images of plant leaves
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://iopscience.iop.org/1742-6596/490/1/012085/ http://hdl.handle.net/11449/127107 |
Resumo: | This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images. |
id |
UNSP_bdc984faf775d77982d867bd8ca7e229 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/127107 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fractal descriptors for discrimination of microscopy images of plant leavesThis study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.Institute of Mathematics and Computer Science, University of SãO Paulo (USP), Avenida Trabalhador são-carlense, 400 13566-590 SãO Carlos, SãO Paulo, BrazilScientific Computing Group, SãO Carlos Institute of Physics, University of SãO Paulo (USP), cx 369 13560-970 SãO Carlos, SãO Paulo, BrazilDepartment of Physics, Faculty of Biochemistry and Biological Sciences, National University of Littoral, S3000ZAA Santa Fe, ArgentinaUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Letras de Assis, Assis, Av. Dom Antônio, 2100, Depto de Ciências Biológicas, Parque Universitário, CEP 19806-900, SP, BrasilDepartment of Biological Sciences, Faculty of Sciences and Letters, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP. Av. Dom Antônio, 2100, 19806-900, Assis, BrazilUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Universidad Nacional del LitoralSilva, N. R.Florindo, J. B.Gómez, M. C.Kolb, Rosana Marta [UNESP]Bruno, O. M.2015-08-21T17:53:55Z2015-08-21T17:53:55Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12085http://iopscience.iop.org/1742-6596/490/1/012085/Journal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014.1742-6596http://hdl.handle.net/11449/12710710.1088/1742-6596/490/1/01208595489629112405010000-0003-3841-5597Currículo Lattesreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics. Conference Series0,241info:eu-repo/semantics/openAccess2024-06-13T17:38:04Zoai:repositorio.unesp.br:11449/127107Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:50:36.602237Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fractal descriptors for discrimination of microscopy images of plant leaves |
title |
Fractal descriptors for discrimination of microscopy images of plant leaves |
spellingShingle |
Fractal descriptors for discrimination of microscopy images of plant leaves Silva, N. R. |
title_short |
Fractal descriptors for discrimination of microscopy images of plant leaves |
title_full |
Fractal descriptors for discrimination of microscopy images of plant leaves |
title_fullStr |
Fractal descriptors for discrimination of microscopy images of plant leaves |
title_full_unstemmed |
Fractal descriptors for discrimination of microscopy images of plant leaves |
title_sort |
Fractal descriptors for discrimination of microscopy images of plant leaves |
author |
Silva, N. R. |
author_facet |
Silva, N. R. Florindo, J. B. Gómez, M. C. Kolb, Rosana Marta [UNESP] Bruno, O. M. |
author_role |
author |
author2 |
Florindo, J. B. Gómez, M. C. Kolb, Rosana Marta [UNESP] Bruno, O. M. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) Universidad Nacional del Litoral |
dc.contributor.author.fl_str_mv |
Silva, N. R. Florindo, J. B. Gómez, M. C. Kolb, Rosana Marta [UNESP] Bruno, O. M. |
description |
This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2015-08-21T17:53:55Z 2015-08-21T17:53:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://iopscience.iop.org/1742-6596/490/1/012085/ Journal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014. 1742-6596 http://hdl.handle.net/11449/127107 10.1088/1742-6596/490/1/012085 9548962911240501 0000-0003-3841-5597 |
url |
http://iopscience.iop.org/1742-6596/490/1/012085/ http://hdl.handle.net/11449/127107 |
identifier_str_mv |
Journal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014. 1742-6596 10.1088/1742-6596/490/1/012085 9548962911240501 0000-0003-3841-5597 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Physics. Conference Series 0,241 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12085 |
dc.source.none.fl_str_mv |
Currículo Lattes reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128424325152768 |