Robust and fast vowel recognition using optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ICASSP.2010.5495695 http://hdl.handle.net/11449/71955 |
Resumo: | The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE. |
id |
UNSP_cd295c2fa0c6410dec213d4cc8d37c35 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/71955 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Robust and fast vowel recognition using optimum-path forestNeural networksPattern recognitionSignal classificationSpeech recognitionArtificial neural networksData setsMachine-learningPattern recognition techniquesProcessing systemsRealtime processingSpoken languagesState-of-the-art systemTraining proceduresTraining timeVowel recognitionBiometricsClassifiersComputational linguisticsInformation theoryReal time systemsSignal processingSpeech processingSupport vector machinesTelecommunication equipmentThe applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.São Paulo State University Computer Science DepartmentUniversity of São Paulo Physics Institute of São CarlosUniversity of Campinas Institute of ComputingSão Paulo State University Computer Science DepartmentUniversidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Universidade Estadual de Campinas (UNICAMP)Papa, João Paulo [UNESP]Marana, Aparecido Nilceu [UNESP]Spadotto, André A.Guido, Rodrigo C.Falcão, Alexandre X.2014-05-27T11:24:50Z2014-05-27T11:24:50Z2010-11-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject2190-2193http://dx.doi.org/10.1109/ICASSP.2010.5495695ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 2190-2193.1520-6149http://hdl.handle.net/11449/7195510.1109/ICASSP.2010.5495695WOS:0002870960020422-s2.0-780493791559039182932747194602771375094268965420862268080670000-0002-0924-8024Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/71955Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:37:31.332369Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Robust and fast vowel recognition using optimum-path forest |
title |
Robust and fast vowel recognition using optimum-path forest |
spellingShingle |
Robust and fast vowel recognition using optimum-path forest Papa, João Paulo [UNESP] Neural networks Pattern recognition Signal classification Speech recognition Artificial neural networks Data sets Machine-learning Pattern recognition techniques Processing systems Realtime processing Spoken languages State-of-the-art system Training procedures Training time Vowel recognition Biometrics Classifiers Computational linguistics Information theory Real time systems Signal processing Speech processing Support vector machines Telecommunication equipment |
title_short |
Robust and fast vowel recognition using optimum-path forest |
title_full |
Robust and fast vowel recognition using optimum-path forest |
title_fullStr |
Robust and fast vowel recognition using optimum-path forest |
title_full_unstemmed |
Robust and fast vowel recognition using optimum-path forest |
title_sort |
Robust and fast vowel recognition using optimum-path forest |
author |
Papa, João Paulo [UNESP] |
author_facet |
Papa, João Paulo [UNESP] Marana, Aparecido Nilceu [UNESP] Spadotto, André A. Guido, Rodrigo C. Falcão, Alexandre X. |
author_role |
author |
author2 |
Marana, Aparecido Nilceu [UNESP] Spadotto, André A. Guido, Rodrigo C. Falcão, Alexandre X. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Papa, João Paulo [UNESP] Marana, Aparecido Nilceu [UNESP] Spadotto, André A. Guido, Rodrigo C. Falcão, Alexandre X. |
dc.subject.por.fl_str_mv |
Neural networks Pattern recognition Signal classification Speech recognition Artificial neural networks Data sets Machine-learning Pattern recognition techniques Processing systems Realtime processing Spoken languages State-of-the-art system Training procedures Training time Vowel recognition Biometrics Classifiers Computational linguistics Information theory Real time systems Signal processing Speech processing Support vector machines Telecommunication equipment |
topic |
Neural networks Pattern recognition Signal classification Speech recognition Artificial neural networks Data sets Machine-learning Pattern recognition techniques Processing systems Realtime processing Spoken languages State-of-the-art system Training procedures Training time Vowel recognition Biometrics Classifiers Computational linguistics Information theory Real time systems Signal processing Speech processing Support vector machines Telecommunication equipment |
description |
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11-08 2014-05-27T11:24:50Z 2014-05-27T11:24:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ICASSP.2010.5495695 ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 2190-2193. 1520-6149 http://hdl.handle.net/11449/71955 10.1109/ICASSP.2010.5495695 WOS:000287096002042 2-s2.0-78049379155 9039182932747194 6027713750942689 6542086226808067 0000-0002-0924-8024 |
url |
http://dx.doi.org/10.1109/ICASSP.2010.5495695 http://hdl.handle.net/11449/71955 |
identifier_str_mv |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, p. 2190-2193. 1520-6149 10.1109/ICASSP.2010.5495695 WOS:000287096002042 2-s2.0-78049379155 9039182932747194 6027713750942689 6542086226808067 0000-0002-0924-8024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2190-2193 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129342444666880 |