Learning concept drift with ensembles of optimum-path forest-based classifiers

Detalhes bibliográficos
Autor(a) principal: Iwashita, Adriana Sayuri
Data de Publicação: 2019
Outros Autores: Albuquerque, Victor Hugo C. de, Papa, Joao Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.future.2019.01.005
http://hdl.handle.net/11449/186724
Resumo: Concept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved.
id UNSP_cdf2631abb6b7a62360bb44b241c4f4c
oai_identifier_str oai:repositorio.unesp.br:11449/186724
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Learning concept drift with ensembles of optimum-path forest-based classifiersOptimum-path forestConcept driftEnsemble learningConcept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Sao Paulo, BrazilSao Paulo State Univ, Sao Paulo, BrazilUniv Fortaleza, Fortaleza, Ceara, BrazilSao Paulo State Univ, Sao Paulo, BrazilFAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1FAPESP: 2016/19200-8CNPq: 306166/2014-3CNPq: 304315/2017-6CNPq: 307066/2017-7CNPq: 430274/2018-1Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Univ FortalezaIwashita, Adriana SayuriAlbuquerque, Victor Hugo C. dePapa, Joao Paulo [UNESP]2019-10-05T23:26:50Z2019-10-05T23:26:50Z2019-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article198-211http://dx.doi.org/10.1016/j.future.2019.01.005Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019.0167-739Xhttp://hdl.handle.net/11449/18672410.1016/j.future.2019.01.005WOS:000465509600018Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFuture Generation Computer Systems-the International Journal Of Escienceinfo:eu-repo/semantics/openAccess2024-04-23T16:10:45Zoai:repositorio.unesp.br:11449/186724Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:24:59.347587Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Learning concept drift with ensembles of optimum-path forest-based classifiers
title Learning concept drift with ensembles of optimum-path forest-based classifiers
spellingShingle Learning concept drift with ensembles of optimum-path forest-based classifiers
Iwashita, Adriana Sayuri
Optimum-path forest
Concept drift
Ensemble learning
title_short Learning concept drift with ensembles of optimum-path forest-based classifiers
title_full Learning concept drift with ensembles of optimum-path forest-based classifiers
title_fullStr Learning concept drift with ensembles of optimum-path forest-based classifiers
title_full_unstemmed Learning concept drift with ensembles of optimum-path forest-based classifiers
title_sort Learning concept drift with ensembles of optimum-path forest-based classifiers
author Iwashita, Adriana Sayuri
author_facet Iwashita, Adriana Sayuri
Albuquerque, Victor Hugo C. de
Papa, Joao Paulo [UNESP]
author_role author
author2 Albuquerque, Victor Hugo C. de
Papa, Joao Paulo [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
Univ Fortaleza
dc.contributor.author.fl_str_mv Iwashita, Adriana Sayuri
Albuquerque, Victor Hugo C. de
Papa, Joao Paulo [UNESP]
dc.subject.por.fl_str_mv Optimum-path forest
Concept drift
Ensemble learning
topic Optimum-path forest
Concept drift
Ensemble learning
description Concept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-05T23:26:50Z
2019-10-05T23:26:50Z
2019-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.future.2019.01.005
Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019.
0167-739X
http://hdl.handle.net/11449/186724
10.1016/j.future.2019.01.005
WOS:000465509600018
url http://dx.doi.org/10.1016/j.future.2019.01.005
http://hdl.handle.net/11449/186724
identifier_str_mv Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019.
0167-739X
10.1016/j.future.2019.01.005
WOS:000465509600018
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Future Generation Computer Systems-the International Journal Of Escience
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 198-211
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128646409355264