Learning concept drift with ensembles of optimum-path forest-based classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.future.2019.01.005 http://hdl.handle.net/11449/186724 |
Resumo: | Concept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved. |
id |
UNSP_cdf2631abb6b7a62360bb44b241c4f4c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186724 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Learning concept drift with ensembles of optimum-path forest-based classifiersOptimum-path forestConcept driftEnsemble learningConcept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Sao Paulo, BrazilSao Paulo State Univ, Sao Paulo, BrazilUniv Fortaleza, Fortaleza, Ceara, BrazilSao Paulo State Univ, Sao Paulo, BrazilFAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1FAPESP: 2016/19200-8CNPq: 306166/2014-3CNPq: 304315/2017-6CNPq: 307066/2017-7CNPq: 430274/2018-1Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Univ FortalezaIwashita, Adriana SayuriAlbuquerque, Victor Hugo C. dePapa, Joao Paulo [UNESP]2019-10-05T23:26:50Z2019-10-05T23:26:50Z2019-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article198-211http://dx.doi.org/10.1016/j.future.2019.01.005Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019.0167-739Xhttp://hdl.handle.net/11449/18672410.1016/j.future.2019.01.005WOS:000465509600018Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengFuture Generation Computer Systems-the International Journal Of Escienceinfo:eu-repo/semantics/openAccess2024-04-23T16:10:45Zoai:repositorio.unesp.br:11449/186724Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:24:59.347587Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
title |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
spellingShingle |
Learning concept drift with ensembles of optimum-path forest-based classifiers Iwashita, Adriana Sayuri Optimum-path forest Concept drift Ensemble learning |
title_short |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
title_full |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
title_fullStr |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
title_full_unstemmed |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
title_sort |
Learning concept drift with ensembles of optimum-path forest-based classifiers |
author |
Iwashita, Adriana Sayuri |
author_facet |
Iwashita, Adriana Sayuri Albuquerque, Victor Hugo C. de Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Albuquerque, Victor Hugo C. de Papa, Joao Paulo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) Univ Fortaleza |
dc.contributor.author.fl_str_mv |
Iwashita, Adriana Sayuri Albuquerque, Victor Hugo C. de Papa, Joao Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Optimum-path forest Concept drift Ensemble learning |
topic |
Optimum-path forest Concept drift Ensemble learning |
description |
Concept drift methods learn patterns in non-stationary environments. Although such behavior is usually not expected in traditional classification problems, in real-world scenarios one can face them very much easier. In such a context, classifiers can be fooled and their effectiveness affected as well. Some examples include theft detection in energy distribution systems, where the consumer's behavior may change suddenly or smoothly, or even churn prediction in mobile companies. In this paper, we introduce the Optimum-Path Forest (OPF) classifier in the context of concept drift, using decisions for concept drift handling based on a committee of OPF classifiers. We consider three distinct perspectives (three rounds of experiments with variations of streaming managements) over publics datasets, being the results compared to the ones obtained by standard OPF. We consider OPF ensemble suitable to work under these dynamic scenarios since its recognition rates were considerably better when compared to traditional OPF. (C) 2019 Elsevier B.V. All rights reserved. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-05T23:26:50Z 2019-10-05T23:26:50Z 2019-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.future.2019.01.005 Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019. 0167-739X http://hdl.handle.net/11449/186724 10.1016/j.future.2019.01.005 WOS:000465509600018 |
url |
http://dx.doi.org/10.1016/j.future.2019.01.005 http://hdl.handle.net/11449/186724 |
identifier_str_mv |
Future Generation Computer Systems-the International Journal Of Escience. Amsterdam: Elsevier Science Bv, v. 95, p. 198-211, 2019. 0167-739X 10.1016/j.future.2019.01.005 WOS:000465509600018 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Future Generation Computer Systems-the International Journal Of Escience |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
198-211 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128646409355264 |