Bayesian inference and diagnostics in zero-inflated generalized power series regression model

Detalhes bibliográficos
Autor(a) principal: Barriga, Gladys D. Cacsire [UNESP]
Data de Publicação: 2016
Outros Autores: Dey, Dipak K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1080/03610926.2014.919397
http://hdl.handle.net/11449/159083
Resumo: The paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California.
id UNSP_cf261294c200c97bef57628a1f863e30
oai_identifier_str oai:repositorio.unesp.br:11449/159083
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bayesian inference and diagnostics in zero-inflated generalized power series regression modelBayesian analysisCount dataDivergence measuresGeneralized power series modelParameter estimationRegression modelZero-inflated modelThe paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California.Univ Estadual Paulista Julio de Mesquita Filho FE, Av Engn Luiz Edmundo C Coube, Bauru, SP, BrazilUniv Connecticut, Dept Stat, Storrs, CT 06269 USAUniv Estadual Paulista Julio de Mesquita Filho FE, Av Engn Luiz Edmundo C Coube, Bauru, SP, BrazilTaylor & Francis IncUniversidade Estadual Paulista (Unesp)Univ ConnecticutBarriga, Gladys D. Cacsire [UNESP]Dey, Dipak K.2018-11-26T15:31:15Z2018-11-26T15:31:15Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6553-6568application/pdfhttp://dx.doi.org/10.1080/03610926.2014.919397Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016.0361-0926http://hdl.handle.net/11449/15908310.1080/03610926.2014.919397WOS:000383559000005WOS000383559000005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications In Statistics-theory And Methods0,352info:eu-repo/semantics/openAccess2023-12-18T06:18:21Zoai:repositorio.unesp.br:11449/159083Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:40:32.255743Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bayesian inference and diagnostics in zero-inflated generalized power series regression model
title Bayesian inference and diagnostics in zero-inflated generalized power series regression model
spellingShingle Bayesian inference and diagnostics in zero-inflated generalized power series regression model
Barriga, Gladys D. Cacsire [UNESP]
Bayesian analysis
Count data
Divergence measures
Generalized power series model
Parameter estimation
Regression model
Zero-inflated model
title_short Bayesian inference and diagnostics in zero-inflated generalized power series regression model
title_full Bayesian inference and diagnostics in zero-inflated generalized power series regression model
title_fullStr Bayesian inference and diagnostics in zero-inflated generalized power series regression model
title_full_unstemmed Bayesian inference and diagnostics in zero-inflated generalized power series regression model
title_sort Bayesian inference and diagnostics in zero-inflated generalized power series regression model
author Barriga, Gladys D. Cacsire [UNESP]
author_facet Barriga, Gladys D. Cacsire [UNESP]
Dey, Dipak K.
author_role author
author2 Dey, Dipak K.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Univ Connecticut
dc.contributor.author.fl_str_mv Barriga, Gladys D. Cacsire [UNESP]
Dey, Dipak K.
dc.subject.por.fl_str_mv Bayesian analysis
Count data
Divergence measures
Generalized power series model
Parameter estimation
Regression model
Zero-inflated model
topic Bayesian analysis
Count data
Divergence measures
Generalized power series model
Parameter estimation
Regression model
Zero-inflated model
description The paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-11-26T15:31:15Z
2018-11-26T15:31:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1080/03610926.2014.919397
Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016.
0361-0926
http://hdl.handle.net/11449/159083
10.1080/03610926.2014.919397
WOS:000383559000005
WOS000383559000005.pdf
url http://dx.doi.org/10.1080/03610926.2014.919397
http://hdl.handle.net/11449/159083
identifier_str_mv Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016.
0361-0926
10.1080/03610926.2014.919397
WOS:000383559000005
WOS000383559000005.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Communications In Statistics-theory And Methods
0,352
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 6553-6568
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Inc
publisher.none.fl_str_mv Taylor & Francis Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129232913563648