Bayesian inference and diagnostics in zero-inflated generalized power series regression model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/03610926.2014.919397 http://hdl.handle.net/11449/159083 |
Resumo: | The paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California. |
id |
UNSP_cf261294c200c97bef57628a1f863e30 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/159083 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bayesian inference and diagnostics in zero-inflated generalized power series regression modelBayesian analysisCount dataDivergence measuresGeneralized power series modelParameter estimationRegression modelZero-inflated modelThe paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California.Univ Estadual Paulista Julio de Mesquita Filho FE, Av Engn Luiz Edmundo C Coube, Bauru, SP, BrazilUniv Connecticut, Dept Stat, Storrs, CT 06269 USAUniv Estadual Paulista Julio de Mesquita Filho FE, Av Engn Luiz Edmundo C Coube, Bauru, SP, BrazilTaylor & Francis IncUniversidade Estadual Paulista (Unesp)Univ ConnecticutBarriga, Gladys D. Cacsire [UNESP]Dey, Dipak K.2018-11-26T15:31:15Z2018-11-26T15:31:15Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article6553-6568application/pdfhttp://dx.doi.org/10.1080/03610926.2014.919397Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016.0361-0926http://hdl.handle.net/11449/15908310.1080/03610926.2014.919397WOS:000383559000005WOS000383559000005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications In Statistics-theory And Methods0,352info:eu-repo/semantics/openAccess2023-12-18T06:18:21Zoai:repositorio.unesp.br:11449/159083Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:40:32.255743Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
title |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
spellingShingle |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model Barriga, Gladys D. Cacsire [UNESP] Bayesian analysis Count data Divergence measures Generalized power series model Parameter estimation Regression model Zero-inflated model |
title_short |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
title_full |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
title_fullStr |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
title_full_unstemmed |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
title_sort |
Bayesian inference and diagnostics in zero-inflated generalized power series regression model |
author |
Barriga, Gladys D. Cacsire [UNESP] |
author_facet |
Barriga, Gladys D. Cacsire [UNESP] Dey, Dipak K. |
author_role |
author |
author2 |
Dey, Dipak K. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Univ Connecticut |
dc.contributor.author.fl_str_mv |
Barriga, Gladys D. Cacsire [UNESP] Dey, Dipak K. |
dc.subject.por.fl_str_mv |
Bayesian analysis Count data Divergence measures Generalized power series model Parameter estimation Regression model Zero-inflated model |
topic |
Bayesian analysis Count data Divergence measures Generalized power series model Parameter estimation Regression model Zero-inflated model |
description |
The paper provides a Bayesian analysis for the zero-inflated regression models based on the generalized power series distribution. The approach is based on Markov chain Monte Carlo methods. The residual analysis is discussed and case-deletion influence diagnostics are developed for the joint posterior distribution, based on the -divergence, which includes several divergence measures such as the Kullback-Leibler, J-distance, L-1 norm, and (2)-square in zero-inflated general power series models. The methodology is reflected in a data set collected by wildlife biologists in a state park in California. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-11-26T15:31:15Z 2018-11-26T15:31:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/03610926.2014.919397 Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016. 0361-0926 http://hdl.handle.net/11449/159083 10.1080/03610926.2014.919397 WOS:000383559000005 WOS000383559000005.pdf |
url |
http://dx.doi.org/10.1080/03610926.2014.919397 http://hdl.handle.net/11449/159083 |
identifier_str_mv |
Communications In Statistics-theory And Methods. Philadelphia: Taylor & Francis Inc, v. 45, n. 22, p. 6553-6568, 2016. 0361-0926 10.1080/03610926.2014.919397 WOS:000383559000005 WOS000383559000005.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Communications In Statistics-theory And Methods 0,352 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
6553-6568 application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Inc |
publisher.none.fl_str_mv |
Taylor & Francis Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129232913563648 |