Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach

Detalhes bibliográficos
Autor(a) principal: Mattar, Henrique L.
Data de Publicação: 2004
Outros Autores: Minim, Luis A., Coimbra, Jane S. R., Minim, Valéria P. R., Saraiva, Sérgio H., Telis-Romero, Javier [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1081/JFP-200032964
http://hdl.handle.net/11449/225452
Resumo: The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0°C, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.
id UNSP_df7ac77cab0cd5ae3329eef004e86694
oai_identifier_str oai:repositorio.unesp.br:11449/225452
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Modeling thermal conductivity, specific Heat, and density of milk: A neural network approachMilkModelingNeural networkThermophysical propertiesThe accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0°C, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.Department of Food Technology Federal University of Viçosa, Viçosa, MGDepartment of Food Technology UNESP, São José do Rio, Preto, São PauloDepartment of Food Technology UNESP, São José do Rio, Preto, São PauloFederal University of ViçosaUniversidade Estadual Paulista (UNESP)Mattar, Henrique L.Minim, Luis A.Coimbra, Jane S. R.Minim, Valéria P. R.Saraiva, Sérgio H.Telis-Romero, Javier [UNESP]2022-04-28T20:51:09Z2022-04-28T20:51:09Z2004-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article531-539http://dx.doi.org/10.1081/JFP-200032964International Journal of Food Properties, v. 7, n. 3, p. 531-539, 2004.1094-2912http://hdl.handle.net/11449/22545210.1081/JFP-2000329642-s2.0-6344282437Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Food Propertiesinfo:eu-repo/semantics/openAccess2022-04-28T20:51:09Zoai:repositorio.unesp.br:11449/225452Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:25:19.564119Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
title Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
spellingShingle Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
Mattar, Henrique L.
Milk
Modeling
Neural network
Thermophysical properties
title_short Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
title_full Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
title_fullStr Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
title_full_unstemmed Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
title_sort Modeling thermal conductivity, specific Heat, and density of milk: A neural network approach
author Mattar, Henrique L.
author_facet Mattar, Henrique L.
Minim, Luis A.
Coimbra, Jane S. R.
Minim, Valéria P. R.
Saraiva, Sérgio H.
Telis-Romero, Javier [UNESP]
author_role author
author2 Minim, Luis A.
Coimbra, Jane S. R.
Minim, Valéria P. R.
Saraiva, Sérgio H.
Telis-Romero, Javier [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Federal University of Viçosa
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Mattar, Henrique L.
Minim, Luis A.
Coimbra, Jane S. R.
Minim, Valéria P. R.
Saraiva, Sérgio H.
Telis-Romero, Javier [UNESP]
dc.subject.por.fl_str_mv Milk
Modeling
Neural network
Thermophysical properties
topic Milk
Modeling
Neural network
Thermophysical properties
description The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0°C, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.
publishDate 2004
dc.date.none.fl_str_mv 2004-01-01
2022-04-28T20:51:09Z
2022-04-28T20:51:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1081/JFP-200032964
International Journal of Food Properties, v. 7, n. 3, p. 531-539, 2004.
1094-2912
http://hdl.handle.net/11449/225452
10.1081/JFP-200032964
2-s2.0-6344282437
url http://dx.doi.org/10.1081/JFP-200032964
http://hdl.handle.net/11449/225452
identifier_str_mv International Journal of Food Properties, v. 7, n. 3, p. 531-539, 2004.
1094-2912
10.1081/JFP-200032964
2-s2.0-6344282437
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Food Properties
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 531-539
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129317691981824