Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1136/gutjnl-2021-326470 http://hdl.handle.net/11449/237698 |
Resumo: | In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training. |
id |
UNSP_f0125bdefea2543978940e5a5d0d547e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/237698 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithmEndoscopic proceduresEndoscopySurgical oncologyIn this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.Univ Klinikum Augsburg, Dept Gastroenterol, D-86156 Augsburg, Bayern, GermanyOstbayer TH Regensburg, Regensburg Med Image Comp ReMIC, Regensburg, GermanyUniv British Columbia, Dept Med, Vancouver, BC, CanadaOstalb Klinikum Aalen, Dept Gastroenterol, Aalen, GermanyUniv Fed Sao Carlos, Dept Comp, Sao Carlos, BrazilSao Paulo State Univ, Dept Comp, Botucatu, SP, BrazilUniv British Columbia, Vancouver Gen Hosp, Vancouver, BC, CanadaSao Paulo State Univ, Dept Comp, Botucatu, SP, BrazilBmj Publishing GroupUniv Klinikum AugsburgOstbayer TH RegensburgUniv British ColumbiaOstalb Klinikum AalenUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Ebigbo, AlannaMendel, RobertScheppach, Markus W.Probst, AndreasShahidi, NealPrinz, FriederikeFleischmann, CarolaRoemmele, ChristophGoelder, Stefan KarlBraun, GeorgRauber, DavidRueckert, TobiasSouza Jr, Luis A. dePapa, Joao [UNESP]Byrne, MichaelPalm, ChristophMessmann, Helmut2022-11-30T13:42:13Z2022-11-30T13:42:13Z2022-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3http://dx.doi.org/10.1136/gutjnl-2021-326470Gut. London: Bmj Publishing Group, 3 p., 2022.0017-5749http://hdl.handle.net/11449/23769810.1136/gutjnl-2021-326470WOS:000855856700001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengGutinfo:eu-repo/semantics/openAccess2022-11-30T13:42:14Zoai:repositorio.unesp.br:11449/237698Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:26:06.777150Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
title |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
spellingShingle |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm Ebigbo, Alanna Endoscopic procedures Endoscopy Surgical oncology |
title_short |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
title_full |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
title_fullStr |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
title_full_unstemmed |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
title_sort |
Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm |
author |
Ebigbo, Alanna |
author_facet |
Ebigbo, Alanna Mendel, Robert Scheppach, Markus W. Probst, Andreas Shahidi, Neal Prinz, Friederike Fleischmann, Carola Roemmele, Christoph Goelder, Stefan Karl Braun, Georg Rauber, David Rueckert, Tobias Souza Jr, Luis A. de Papa, Joao [UNESP] Byrne, Michael Palm, Christoph Messmann, Helmut |
author_role |
author |
author2 |
Mendel, Robert Scheppach, Markus W. Probst, Andreas Shahidi, Neal Prinz, Friederike Fleischmann, Carola Roemmele, Christoph Goelder, Stefan Karl Braun, Georg Rauber, David Rueckert, Tobias Souza Jr, Luis A. de Papa, Joao [UNESP] Byrne, Michael Palm, Christoph Messmann, Helmut |
author2_role |
author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Klinikum Augsburg Ostbayer TH Regensburg Univ British Columbia Ostalb Klinikum Aalen Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Ebigbo, Alanna Mendel, Robert Scheppach, Markus W. Probst, Andreas Shahidi, Neal Prinz, Friederike Fleischmann, Carola Roemmele, Christoph Goelder, Stefan Karl Braun, Georg Rauber, David Rueckert, Tobias Souza Jr, Luis A. de Papa, Joao [UNESP] Byrne, Michael Palm, Christoph Messmann, Helmut |
dc.subject.por.fl_str_mv |
Endoscopic procedures Endoscopy Surgical oncology |
topic |
Endoscopic procedures Endoscopy Surgical oncology |
description |
In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63% and 76%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-30T13:42:13Z 2022-11-30T13:42:13Z 2022-09-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1136/gutjnl-2021-326470 Gut. London: Bmj Publishing Group, 3 p., 2022. 0017-5749 http://hdl.handle.net/11449/237698 10.1136/gutjnl-2021-326470 WOS:000855856700001 |
url |
http://dx.doi.org/10.1136/gutjnl-2021-326470 http://hdl.handle.net/11449/237698 |
identifier_str_mv |
Gut. London: Bmj Publishing Group, 3 p., 2022. 0017-5749 10.1136/gutjnl-2021-326470 WOS:000855856700001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Gut |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3 |
dc.publisher.none.fl_str_mv |
Bmj Publishing Group |
publisher.none.fl_str_mv |
Bmj Publishing Group |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128359437172736 |