Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/247350 |
Resumo: | In climate changes context Remote Sensing tools are widely used and widespread in research. In this sense, Artificial Intelligence rises offering possible improves for environmental monitoring applications using techniques such as Machine Learning for Anomaly Detection applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth’s surface. This approach is explored in three high dynamic regions in Brazil assessing deforestation, fires and technological disaster areas using One-Class SVM and Isolation Forest methods over MODIS, Landsat and Sentinel images. |
id |
UNSP_fde5f292036529dfb180cd640268a3cc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/247350 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in BrazilIn climate changes context Remote Sensing tools are widely used and widespread in research. In this sense, Artificial Intelligence rises offering possible improves for environmental monitoring applications using techniques such as Machine Learning for Anomaly Detection applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth’s surface. This approach is explored in three high dynamic regions in Brazil assessing deforestation, fires and technological disaster areas using One-Class SVM and Isolation Forest methods over MODIS, Landsat and Sentinel images.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Instituto de Ciência e Tecnologia (ICT) Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SPInstituto de Ciência e Tecnologia (ICT) Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SPFAPESP: 2018/01033-3FAPESP: 2020/14664-1FAPESP: 2021/01305-6Universidade Estadual Paulista (UNESP)Gino, Vinícius L.S. [UNESP]Negri, Rogério G. [UNESP]Souza, Felipe N. [UNESP]2023-07-29T13:13:44Z2023-07-29T13:13:44Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject99-110Proceedings of the Brazilian Symposium on GeoInformatics, p. 99-110.2179-4847http://hdl.handle.net/11449/2473502-s2.0-85159076324Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the Brazilian Symposium on GeoInformaticsinfo:eu-repo/semantics/openAccess2023-07-29T13:13:44Zoai:repositorio.unesp.br:11449/247350Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:08:26.987348Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
title |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
spellingShingle |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil Gino, Vinícius L.S. [UNESP] |
title_short |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
title_full |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
title_fullStr |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
title_full_unstemmed |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
title_sort |
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil |
author |
Gino, Vinícius L.S. [UNESP] |
author_facet |
Gino, Vinícius L.S. [UNESP] Negri, Rogério G. [UNESP] Souza, Felipe N. [UNESP] |
author_role |
author |
author2 |
Negri, Rogério G. [UNESP] Souza, Felipe N. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Gino, Vinícius L.S. [UNESP] Negri, Rogério G. [UNESP] Souza, Felipe N. [UNESP] |
description |
In climate changes context Remote Sensing tools are widely used and widespread in research. In this sense, Artificial Intelligence rises offering possible improves for environmental monitoring applications using techniques such as Machine Learning for Anomaly Detection applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth’s surface. This approach is explored in three high dynamic regions in Brazil assessing deforestation, fires and technological disaster areas using One-Class SVM and Isolation Forest methods over MODIS, Landsat and Sentinel images. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-07-29T13:13:44Z 2023-07-29T13:13:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings of the Brazilian Symposium on GeoInformatics, p. 99-110. 2179-4847 http://hdl.handle.net/11449/247350 2-s2.0-85159076324 |
identifier_str_mv |
Proceedings of the Brazilian Symposium on GeoInformatics, p. 99-110. 2179-4847 2-s2.0-85159076324 |
url |
http://hdl.handle.net/11449/247350 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the Brazilian Symposium on GeoInformatics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
99-110 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128609868578816 |