Produção de bioetanol e biometano a partir da biomassa de spirulina sp.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
Texto Completo: | http://tede.upf.br/jspui/handle/tede/1519 |
Resumo: | The high demand for renewable and more sustainable sources of fuel that can replace the current energy matrix based on oil has led to the search for new sources of biomass, among which the algal biomass stands out. Microalgae have advantages over other raw materials because they do not need arable land for their cultivation, not competing with food production, besides helping to fix atmospheric carbon dioxide. The production of bioethanol from microalgal biomass has been reported, but the efficiency of this production process is still low, and there is a need for optimization of the production stages and cost reduction, which can be accomplished through the study of pre-treatments biomass and immobilization of enzymes used in hydrolysis, as well as the use of residues generated to obtain other biofuels, such as biomethane, contributing to increase the economic viability of the process as a whole. The objective was to produce bioethanol from Spirulina sp. LEB 52 and to use waste from the production of bioethanol in the production of biomethane. The microalga was cultivated in open tanks of 10 L using Zarrouk 20% medium, obtaining a biomass with 55% of carbohydrates, which was submitted to different pre-treatments for cellular rupture by physical methods, aiming to study which would be the most efficient in the release of intracellular polysaccharides. Afterwards, they were hydrolyzed by commercial amylolytic enzymes (alpha-amylase and amyloglucosidase), which were previously characterized for optimum ranges of pH and temperature of action. The hydrolysis of the algal biomass was carried out after pretreatment, using liquid enzymatic extracts and immobilized in polyurethane. The enzymes were immobilized separately and joined together in the support. Afterwards, enzymatic saccharification tests were performed using the free enzymes, with subsequent alcoholic fermentation. In alcoholic fermentation, the initial concentration of reducing sugars in the must and the supplementation of the hydrolyzate with nutrients were studied. The residues from saccharification and the fermentation process were subsequently used for the generation of biomethane. The best pre-treatment for cell disruption was freezing / thawing. In the characterization of the enzymes for optimum pH and temperature, both enzymes had the best results at 50 ºC and pH 5.5. With the non-immobilized enzymes results of near-100% biomass hydrolysis efficiency were obtained using 1% (v/v) of each of the enzymes. With the immobilized biocatalysts, the hydrolysis efficiencies were 83% using 1% (m/v) support containing the immobilized enzymes together. The fermentations presented efficiencies of bioethanol production around 83% without addition of nutrients to the must and with less hydrolyzate addition in the preparation of the inoculum, obtaining 23 g / L of ethanol. Ethanol production residues had a high bioethanol production potential of about 422 LN (kgSVad-1). Thus, it is possible to make use of these residues, thus giving more profitability and viability in the production process, thus providing a cycle closure, from microalgae cultivation to bioethanol production and ending with the use of residues in production of biomethane, thus adding greater viability and sustainability to the process. |
id |
UPF-1_03b43dc7db8e7a6f833ba191b56a4778 |
---|---|
oai_identifier_str |
oai:tede.upf.br:tede/1519 |
network_acronym_str |
UPF-1 |
network_name_str |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
repository_id_str |
|
spelling |
Colla, Luciane Maria02309369977http://lattes.cnpq.br/4804304036455640Treichel, Helen61700134000http://lattes.cnpq.br/478669410750872201830525018http://lattes.cnpq.br/1083494582876960Rempel, Alan2018-10-05T19:57:16Z2018-04-02REMPEL, Alan. Produção de bioetanol e biometano a partir da biomassa de spirulina sp. 2018. 86 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2018.http://tede.upf.br/jspui/handle/tede/1519The high demand for renewable and more sustainable sources of fuel that can replace the current energy matrix based on oil has led to the search for new sources of biomass, among which the algal biomass stands out. Microalgae have advantages over other raw materials because they do not need arable land for their cultivation, not competing with food production, besides helping to fix atmospheric carbon dioxide. The production of bioethanol from microalgal biomass has been reported, but the efficiency of this production process is still low, and there is a need for optimization of the production stages and cost reduction, which can be accomplished through the study of pre-treatments biomass and immobilization of enzymes used in hydrolysis, as well as the use of residues generated to obtain other biofuels, such as biomethane, contributing to increase the economic viability of the process as a whole. The objective was to produce bioethanol from Spirulina sp. LEB 52 and to use waste from the production of bioethanol in the production of biomethane. The microalga was cultivated in open tanks of 10 L using Zarrouk 20% medium, obtaining a biomass with 55% of carbohydrates, which was submitted to different pre-treatments for cellular rupture by physical methods, aiming to study which would be the most efficient in the release of intracellular polysaccharides. Afterwards, they were hydrolyzed by commercial amylolytic enzymes (alpha-amylase and amyloglucosidase), which were previously characterized for optimum ranges of pH and temperature of action. The hydrolysis of the algal biomass was carried out after pretreatment, using liquid enzymatic extracts and immobilized in polyurethane. The enzymes were immobilized separately and joined together in the support. Afterwards, enzymatic saccharification tests were performed using the free enzymes, with subsequent alcoholic fermentation. In alcoholic fermentation, the initial concentration of reducing sugars in the must and the supplementation of the hydrolyzate with nutrients were studied. The residues from saccharification and the fermentation process were subsequently used for the generation of biomethane. The best pre-treatment for cell disruption was freezing / thawing. In the characterization of the enzymes for optimum pH and temperature, both enzymes had the best results at 50 ºC and pH 5.5. With the non-immobilized enzymes results of near-100% biomass hydrolysis efficiency were obtained using 1% (v/v) of each of the enzymes. With the immobilized biocatalysts, the hydrolysis efficiencies were 83% using 1% (m/v) support containing the immobilized enzymes together. The fermentations presented efficiencies of bioethanol production around 83% without addition of nutrients to the must and with less hydrolyzate addition in the preparation of the inoculum, obtaining 23 g / L of ethanol. Ethanol production residues had a high bioethanol production potential of about 422 LN (kgSVad-1). Thus, it is possible to make use of these residues, thus giving more profitability and viability in the production process, thus providing a cycle closure, from microalgae cultivation to bioethanol production and ending with the use of residues in production of biomethane, thus adding greater viability and sustainability to the process.A elevada demanda por fontes de combustíveis renováveis e mais sustentáveis, que possam substituir a matriz energética atual, baseada no petróleo, tem levado à busca por novas fontes de biomassa, dentre as quais destaca-se a biomassa algal. As microalgas apresentam vantagens sobre outras matérias-primas por não necessitarem de terras aráveis para o seu cultivo, não competindo com a produção de alimentos, além de auxiliarem na fixação do gás carbônico atmosférico. A produção de bioetanol a partir de biomassa microalgal tem sido relatada, porém a eficiência deste processo de produção ainda é baixa, havendo a necessidade de otimização das etapas de produção e redução de custos, o que pode ser realizado através do estudo de pré-tratamentos da biomassa e imobilização de enzimas usadas na hidrólise, além da utilização dos resíduos gerados para a obtenção de outros biocombustíveis, como o biometano, contribuindo para o aumento da viabilidade econômica do processo como um todo. Objetivou-se produzir bioetanol a partir da biomassa de Spirulina sp. LEB 52 e utilizar os resíduos da produção do bioetanol na produção de biometano. A microalga foi cultivada em tanques abertos de 10 L utilizando meio Zarrouk 20%, obtendo-se uma biomassa com 55% de carboidratos, a qual foi submetida a diferentes pré-tratamentos para ruptura celular por métodos físicos, visando estudar qual seria o mais eficiente na liberação dos polissacarídeos intracelulares. Após, estes foram hidrolisados por enzimas amilolíticas comerciais (alfa-amilase e amiloglicosidase), as quais foram previamente caracterizadas quanto as faixas ótimas de pH e temperatura de ação. A hidrólise da biomassa algal foi realizada após o pré-tratamento, utilizando-se extratos enzimáticos líquidos e imobilizados em poliuretano. As enzimas foram imobilizadas separadas e em conjunto no suporte. Após, realizou-se ensaios de sacarificação enzimática utilizando-se as enzimas livres, com posterior fermentação alcoólica. Na fermentação alcoólica, estudou-se a concentração inicial de açúcares redutores no mosto e a suplementação do hidrolisado com nutrientes. Os resíduos da sacarificação e do processo fermentativo foram posteriormente utilizados para a geração de biometano. O melhor pré-tratamento para realizar a ruptura celular foi o de congelamento/descongelamento. Na caracterização das enzimas quanto ao pH e temperatura ótimos, ambas enzimas apresentaram os melhores resultados na temperatura de 50 ºC e pH 5,5. Com as enzimas não imobilizadas obtiveram-se resultados de eficiência hidrólise da biomassa próximos a 100% utilizando 1% (v/v) de cada uma das enzimas. Com os biocatalisadores imobilizados, as eficiências de hidrólise foram de 83% utilizando 1% (m/v) de suporte contendo as enzimas imobilizadas de forma conjunta. As fermentações apresentaram eficiências de produção de bioetanol em torno de 83% sem adição de nutrientes ao mosto e com menor adição de hidrolisado no preparo do inóculo, obtendo-se 23 g/L de etanol. Os resíduos da produção de etanol apresentaram elevado potencial de produção de biometano cerca de 422 LN (kgSVad-1). Sendo assim, é possível realizar o aproveitamento destes resíduos, dando assim mais rentabilidade e viabilidade no processo produtivo, propiciando assim um fechamento de ciclo, que vai desde o cultivo da microalga, passando pela produção de bioetanol e finalizando com o uso dos resíduos na produção de biometano, agregando assim maior viabilidade e sustentabilidade ao processo.Submitted by Mariana Freitas (marianafreitas@upf.br) on 2018-10-05T19:57:16Z No. of bitstreams: 1 2018AlanRempel.pdf: 1377368 bytes, checksum: 586f0678f22ea7eed50366015009ce00 (MD5)Made available in DSpace on 2018-10-05T19:57:16Z (GMT). No. of bitstreams: 1 2018AlanRempel.pdf: 1377368 bytes, checksum: 586f0678f22ea7eed50366015009ce00 (MD5) Previous issue date: 2018-04-02application/pdfporUniversidade de Passo FundoPrograma de Pós-Graduação em Engenharia Civil e AmbientalUPFBrasilFaculdade de Engenharia e Arquitetura – FEARAlgaBiomassaBiocombustíveisCombustíveisENGENHARIAS::ENGENHARIA CIVILProdução de bioetanol e biometano a partir da biomassa de spirulina sp.Production of bioethanol and biomethane from spirulina sp.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-41729612957170071185005006008147033241558623806-6274833215046395772info:eu-repo/semantics/openAccessreponame:Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF)instname:Universidade de Passo Fundo (UPF)instacron:UPFLICENSElicense.txtlicense.txttext/plain; charset=utf-81940http://tede.upf.br:8080/jspui/bitstream/tede/1519/1/license.txte0faded76e3df80302a4a0fb3f2bb5f3MD51ORIGINAL2018AlanRempel.pdf2018AlanRempel.pdfapplication/pdf1377368http://tede.upf.br:8080/jspui/bitstream/tede/1519/2/2018AlanRempel.pdf586f0678f22ea7eed50366015009ce00MD52tede/15192020-09-11 14:47:05.726oai:tede.upf.br:tede/1519TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIGRlIFBhc3NvIEZ1bmRvIChVUEYpIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVQRiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVUEYgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBVUEYgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVVBGLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVVBGIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e DissertaçõesPUBhttp://tede.upf.br/oai/requestbiblio@upf.br || bio@upf.br || cas@upf.br || car@upf.br || lve@upf.br || sar@upf.br || sol@upf.br || upfmundi@upf.br || jucelei@upf.bropendoar:2020-09-11T17:47:05Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) - Universidade de Passo Fundo (UPF)false |
dc.title.por.fl_str_mv |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
dc.title.alternative.eng.fl_str_mv |
Production of bioethanol and biomethane from spirulina sp. |
title |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
spellingShingle |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. Rempel, Alan Alga Biomassa Biocombustíveis Combustíveis ENGENHARIAS::ENGENHARIA CIVIL |
title_short |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
title_full |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
title_fullStr |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
title_full_unstemmed |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
title_sort |
Produção de bioetanol e biometano a partir da biomassa de spirulina sp. |
author |
Rempel, Alan |
author_facet |
Rempel, Alan |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Colla, Luciane Maria |
dc.contributor.advisor1ID.fl_str_mv |
02309369977 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4804304036455640 |
dc.contributor.advisor-co1.fl_str_mv |
Treichel, Helen |
dc.contributor.advisor-co1ID.fl_str_mv |
61700134000 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4786694107508722 |
dc.contributor.authorID.fl_str_mv |
01830525018 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1083494582876960 |
dc.contributor.author.fl_str_mv |
Rempel, Alan |
contributor_str_mv |
Colla, Luciane Maria Treichel, Helen |
dc.subject.por.fl_str_mv |
Alga Biomassa Biocombustíveis Combustíveis |
topic |
Alga Biomassa Biocombustíveis Combustíveis ENGENHARIAS::ENGENHARIA CIVIL |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA CIVIL |
description |
The high demand for renewable and more sustainable sources of fuel that can replace the current energy matrix based on oil has led to the search for new sources of biomass, among which the algal biomass stands out. Microalgae have advantages over other raw materials because they do not need arable land for their cultivation, not competing with food production, besides helping to fix atmospheric carbon dioxide. The production of bioethanol from microalgal biomass has been reported, but the efficiency of this production process is still low, and there is a need for optimization of the production stages and cost reduction, which can be accomplished through the study of pre-treatments biomass and immobilization of enzymes used in hydrolysis, as well as the use of residues generated to obtain other biofuels, such as biomethane, contributing to increase the economic viability of the process as a whole. The objective was to produce bioethanol from Spirulina sp. LEB 52 and to use waste from the production of bioethanol in the production of biomethane. The microalga was cultivated in open tanks of 10 L using Zarrouk 20% medium, obtaining a biomass with 55% of carbohydrates, which was submitted to different pre-treatments for cellular rupture by physical methods, aiming to study which would be the most efficient in the release of intracellular polysaccharides. Afterwards, they were hydrolyzed by commercial amylolytic enzymes (alpha-amylase and amyloglucosidase), which were previously characterized for optimum ranges of pH and temperature of action. The hydrolysis of the algal biomass was carried out after pretreatment, using liquid enzymatic extracts and immobilized in polyurethane. The enzymes were immobilized separately and joined together in the support. Afterwards, enzymatic saccharification tests were performed using the free enzymes, with subsequent alcoholic fermentation. In alcoholic fermentation, the initial concentration of reducing sugars in the must and the supplementation of the hydrolyzate with nutrients were studied. The residues from saccharification and the fermentation process were subsequently used for the generation of biomethane. The best pre-treatment for cell disruption was freezing / thawing. In the characterization of the enzymes for optimum pH and temperature, both enzymes had the best results at 50 ºC and pH 5.5. With the non-immobilized enzymes results of near-100% biomass hydrolysis efficiency were obtained using 1% (v/v) of each of the enzymes. With the immobilized biocatalysts, the hydrolysis efficiencies were 83% using 1% (m/v) support containing the immobilized enzymes together. The fermentations presented efficiencies of bioethanol production around 83% without addition of nutrients to the must and with less hydrolyzate addition in the preparation of the inoculum, obtaining 23 g / L of ethanol. Ethanol production residues had a high bioethanol production potential of about 422 LN (kgSVad-1). Thus, it is possible to make use of these residues, thus giving more profitability and viability in the production process, thus providing a cycle closure, from microalgae cultivation to bioethanol production and ending with the use of residues in production of biomethane, thus adding greater viability and sustainability to the process. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-10-05T19:57:16Z |
dc.date.issued.fl_str_mv |
2018-04-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
REMPEL, Alan. Produção de bioetanol e biometano a partir da biomassa de spirulina sp. 2018. 86 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede.upf.br/jspui/handle/tede/1519 |
identifier_str_mv |
REMPEL, Alan. Produção de bioetanol e biometano a partir da biomassa de spirulina sp. 2018. 86 f. Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade de Passo Fundo, Passo Fundo, RS, 2018. |
url |
http://tede.upf.br/jspui/handle/tede/1519 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-4172961295717007118 |
dc.relation.confidence.fl_str_mv |
500 500 600 |
dc.relation.department.fl_str_mv |
8147033241558623806 |
dc.relation.cnpq.fl_str_mv |
-6274833215046395772 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Civil e Ambiental |
dc.publisher.initials.fl_str_mv |
UPF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Engenharia e Arquitetura – FEAR |
publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.source.none.fl_str_mv |
reponame:Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) instname:Universidade de Passo Fundo (UPF) instacron:UPF |
instname_str |
Universidade de Passo Fundo (UPF) |
instacron_str |
UPF |
institution |
UPF |
reponame_str |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
collection |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
bitstream.url.fl_str_mv |
http://tede.upf.br:8080/jspui/bitstream/tede/1519/1/license.txt http://tede.upf.br:8080/jspui/bitstream/tede/1519/2/2018AlanRempel.pdf |
bitstream.checksum.fl_str_mv |
e0faded76e3df80302a4a0fb3f2bb5f3 586f0678f22ea7eed50366015009ce00 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) - Universidade de Passo Fundo (UPF) |
repository.mail.fl_str_mv |
biblio@upf.br || bio@upf.br || cas@upf.br || car@upf.br || lve@upf.br || sar@upf.br || sol@upf.br || upfmundi@upf.br || jucelei@upf.br |
_version_ |
1809092291727458304 |