A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
Texto Completo: | http://tede.upf.br/jspui/handle/tede/1656 |
Resumo: | This research is part of the thematic about the process of mathematical conceptualization mediated by computer programming. Thinking about the conceptual elaboration movement of Mathematics and about the use of technologies in the educational process is fundamental, considering the growing use of technological apparatuses in today's society and the possibilities it presents for education. From the theoretical reference of Gérard Vergnaud's Conceptual Field Theory, more precisely in concepts of situations, operative invariants and representations, and elements of Seymour Papert's Constructivist Theory, notably the model of the learning spiral proposed by José Armando Valente, the research sought to answer the following question: How are the processes of representation and understanding of the operative invariants of the Linear Functional Field of Experiments manifest in two students of the Technical Course in Informatics of the IFRS – Campus Erechim, based on a didactic strategy mediated by computer programming? For that, a qualitative research was carried out with theoretical study on the conceptual bases and empirical study with the students. In this direction, the Conceptual Field of Linear Functions was constituted, in the sense of delimiting the conceptual field of interest in the research, in which the main operative invariants associated to the situations were categorized: IO1 - variable, IO2 - rate of variation, IO3 - fixed rate and IO4 - one-to-one correspondence, which served as analysis categories. Also, a didactic strategy was created based on the use of computer programming and the contribution of the Theory of Learning Styles, in order to serve as a research tool and also as a contribution of the thesis to the didactic elaboration in the school. The empirical research data were produced by performing the situations on Linear Functions with the Scratch programming environment by two selected students, associated with the method of interactive observation. With this, it was possible to identify the operative and predicative forms of the operative invariants and to interpret the representations and understandings to then describe the associated theorems. As results, the research pointed to the extension of the concept of variable (IO1), providing more complex generalization processes and the possibility of concretization and dynamization of the concept of constant rate of variation (IO2). In addition, it allowed to show that the process of manifestation of the representation and understanding of the operative invariants of the Linear Functions Conceptual Field happened through actions of concretization, dynamization, comprehension and reformulation provided, respectively, by the stages of description, execution, reflection and debugging the spiral of conceptualization, based on a didactic strategy mediated by computer programming. |
id |
UPF-1_91dbe36b8bfae7ea4f8f7e7ab30b0e2d |
---|---|
oai_identifier_str |
oai:tede.upf.br:tede/1656 |
network_acronym_str |
UPF-1 |
network_name_str |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
repository_id_str |
|
spelling |
Teixeira, Adriano Canabarro0863024068http://lattes.cnpq.br/184188279068881300333161041http://lattes.cnpq.br/0795067590237330Lessa, Valéria Espíndola2019-05-08T19:34:22Z2018-09-04LESSA, Valéria Espíndola. A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios. 2018. 182 f. Tese (Doutorado em Educação) - Universidade de Passo Fundo, Passo Fundo, RS, 2018.http://tede.upf.br/jspui/handle/tede/1656This research is part of the thematic about the process of mathematical conceptualization mediated by computer programming. Thinking about the conceptual elaboration movement of Mathematics and about the use of technologies in the educational process is fundamental, considering the growing use of technological apparatuses in today's society and the possibilities it presents for education. From the theoretical reference of Gérard Vergnaud's Conceptual Field Theory, more precisely in concepts of situations, operative invariants and representations, and elements of Seymour Papert's Constructivist Theory, notably the model of the learning spiral proposed by José Armando Valente, the research sought to answer the following question: How are the processes of representation and understanding of the operative invariants of the Linear Functional Field of Experiments manifest in two students of the Technical Course in Informatics of the IFRS – Campus Erechim, based on a didactic strategy mediated by computer programming? For that, a qualitative research was carried out with theoretical study on the conceptual bases and empirical study with the students. In this direction, the Conceptual Field of Linear Functions was constituted, in the sense of delimiting the conceptual field of interest in the research, in which the main operative invariants associated to the situations were categorized: IO1 - variable, IO2 - rate of variation, IO3 - fixed rate and IO4 - one-to-one correspondence, which served as analysis categories. Also, a didactic strategy was created based on the use of computer programming and the contribution of the Theory of Learning Styles, in order to serve as a research tool and also as a contribution of the thesis to the didactic elaboration in the school. The empirical research data were produced by performing the situations on Linear Functions with the Scratch programming environment by two selected students, associated with the method of interactive observation. With this, it was possible to identify the operative and predicative forms of the operative invariants and to interpret the representations and understandings to then describe the associated theorems. As results, the research pointed to the extension of the concept of variable (IO1), providing more complex generalization processes and the possibility of concretization and dynamization of the concept of constant rate of variation (IO2). In addition, it allowed to show that the process of manifestation of the representation and understanding of the operative invariants of the Linear Functions Conceptual Field happened through actions of concretization, dynamization, comprehension and reformulation provided, respectively, by the stages of description, execution, reflection and debugging the spiral of conceptualization, based on a didactic strategy mediated by computer programming.Esta pesquisa insere-se na temática sobre o processo de conceituação matemática mediada pela programação de computadores. Pensar sobre o movimento de elaboração conceitual da Matemática e sobre o uso das tecnologias no processo educativo é fundamental, tendo em vista o crescente uso dos aparatos tecnológicos na sociedade atual e as possibilidades que apresenta para a educação. Com base no referencial teórico da Teoria dos Campos Conceituais de Gérard Vergnaud, mais precisamente nos seus conceitos de situações, invariantes operatórios e representações, e em elementos da Teoria Construcionista de Seymour Papert, notadamente, o modelo da espiral da aprendizagem proposta por José Armando Valente, a pesquisa buscou responder a seguinte questão: Como se manifestam os processos de representação e de compreensão dos invariantes operatórios do Campo Conceitual das Funções Afim em dois estudantes do Curso Técnico em Informática do IFRS campus Erechim a partir de uma estratégia didática mediada pela programação de computadores? Para tanto, realizou-se uma pesquisa de cunho qualitativo com estudo teórico sobre as bases conceituais e estudo empírico com os estudantes. Nessa direção, constituiu-se o Campo Conceitual das Funções Afim, no qual foram categorizados os principais invariantes operatórios associados às situações, o IO1 - variável, IO2 - taxa de variação, IO3 - taxa fixa e IO4 - correspondência biunívoca, os quais atuaram como categorias de análise. Além disso, foi elaborada uma estratégia didática com base no uso da programação de computadores e na contribuição da Teoria dos Estilos de Aprendizagem, a fim de servir como instrumento de pesquisa e, também, como contribuição da Tese para a elaboração didática na escola. Os dados da pesquisa empírica foram produzidos por dois estudantes mediante a realização das situações sobre Funções Afim com o ambiente de programação Scratch, associado ao método da observação interativa. Com isso, foi possível identificar as formas operatórias e predicativas dos invariantes operatórios e interpretar as representações e as compreensões para, então, descrever os teoremas em ação associados. Como resultados, a pesquisa apontou para a ampliação do conceito de variável (IO1) na direção de processos de generalização mais complexos e para a possibilidade de concretização e de dinamização do conceito de taxa de variação constante (IO2). Além disso, permitiu mostrar que o processo de manifestação da representação e da compreensão dos invariantes operatórios do Campo Conceitual das Funções Afim aconteceu por meio de ações de concretização, dinamização, compreensão e reformulação, proporcionadas, respectivamente, pelas etapas da descrição, da execução, da reflexão e da depuração da espiral da conceituação, a partir de uma estratégia didática mediada pela programação de computadores.Submitted by Aline Rezende (alinerezende@upf.br) on 2019-05-08T19:34:22Z No. of bitstreams: 1 2018ValeriaLessa.pdf: 3614470 bytes, checksum: f83fc5b5f5a14705fcee2568c11f9b85 (MD5)Made available in DSpace on 2019-05-08T19:34:22Z (GMT). No. of bitstreams: 1 2018ValeriaLessa.pdf: 3614470 bytes, checksum: f83fc5b5f5a14705fcee2568c11f9b85 (MD5) Previous issue date: 2018-09-04application/pdfporUniversidade de Passo FundoPrograma de Pós-Graduação em EducaçãoUPFBrasilFaculdade de Educação – FAEDProgramação (Computadores)Funções de variáveis complexasMatemática - Estudo e ensinoEstudo e ensino (Programação (Matemática)CIENCIAS HUMANAS::EDUCACAOA programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatóriosComputer programming and the related function: a study on the representation and understanding of operative invariantsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-84512857932284779375005006009220855104128391756-240345818910352367info:eu-repo/semantics/openAccessreponame:Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF)instname:Universidade de Passo Fundo (UPF)instacron:UPFLICENSElicense.txtlicense.txttext/plain; charset=utf-81940http://tede.upf.br:8080/jspui/bitstream/tede/1656/1/license.txte0faded76e3df80302a4a0fb3f2bb5f3MD51ORIGINAL2018ValeriaLessa.pdf2018ValeriaLessa.pdfapplication/pdf11788924http://tede.upf.br:8080/jspui/bitstream/tede/1656/3/2018ValeriaLessa.pdfd61a55b920d4b34654a24876f77b8e3dMD53tede/16562023-05-08 20:45:30.647oai:tede.upf.br:tede/1656TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIGRlIFBhc3NvIEZ1bmRvIChVUEYpIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVQRiBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVUEYgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBVUEYgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVVBGLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVVBGIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e DissertaçõesPUBhttp://tede.upf.br/oai/requestbiblio@upf.br || bio@upf.br || cas@upf.br || car@upf.br || lve@upf.br || sar@upf.br || sol@upf.br || upfmundi@upf.br || jucelei@upf.bropendoar:2023-05-08T23:45:30Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) - Universidade de Passo Fundo (UPF)false |
dc.title.por.fl_str_mv |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
dc.title.alternative.eng.fl_str_mv |
Computer programming and the related function: a study on the representation and understanding of operative invariants |
title |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
spellingShingle |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios Lessa, Valéria Espíndola Programação (Computadores) Funções de variáveis complexas Matemática - Estudo e ensino Estudo e ensino (Programação (Matemática) CIENCIAS HUMANAS::EDUCACAO |
title_short |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
title_full |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
title_fullStr |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
title_full_unstemmed |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
title_sort |
A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios |
author |
Lessa, Valéria Espíndola |
author_facet |
Lessa, Valéria Espíndola |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Teixeira, Adriano Canabarro |
dc.contributor.advisor1ID.fl_str_mv |
0863024068 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1841882790688813 |
dc.contributor.authorID.fl_str_mv |
00333161041 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0795067590237330 |
dc.contributor.author.fl_str_mv |
Lessa, Valéria Espíndola |
contributor_str_mv |
Teixeira, Adriano Canabarro |
dc.subject.por.fl_str_mv |
Programação (Computadores) Funções de variáveis complexas Matemática - Estudo e ensino Estudo e ensino (Programação (Matemática) |
topic |
Programação (Computadores) Funções de variáveis complexas Matemática - Estudo e ensino Estudo e ensino (Programação (Matemática) CIENCIAS HUMANAS::EDUCACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS HUMANAS::EDUCACAO |
description |
This research is part of the thematic about the process of mathematical conceptualization mediated by computer programming. Thinking about the conceptual elaboration movement of Mathematics and about the use of technologies in the educational process is fundamental, considering the growing use of technological apparatuses in today's society and the possibilities it presents for education. From the theoretical reference of Gérard Vergnaud's Conceptual Field Theory, more precisely in concepts of situations, operative invariants and representations, and elements of Seymour Papert's Constructivist Theory, notably the model of the learning spiral proposed by José Armando Valente, the research sought to answer the following question: How are the processes of representation and understanding of the operative invariants of the Linear Functional Field of Experiments manifest in two students of the Technical Course in Informatics of the IFRS – Campus Erechim, based on a didactic strategy mediated by computer programming? For that, a qualitative research was carried out with theoretical study on the conceptual bases and empirical study with the students. In this direction, the Conceptual Field of Linear Functions was constituted, in the sense of delimiting the conceptual field of interest in the research, in which the main operative invariants associated to the situations were categorized: IO1 - variable, IO2 - rate of variation, IO3 - fixed rate and IO4 - one-to-one correspondence, which served as analysis categories. Also, a didactic strategy was created based on the use of computer programming and the contribution of the Theory of Learning Styles, in order to serve as a research tool and also as a contribution of the thesis to the didactic elaboration in the school. The empirical research data were produced by performing the situations on Linear Functions with the Scratch programming environment by two selected students, associated with the method of interactive observation. With this, it was possible to identify the operative and predicative forms of the operative invariants and to interpret the representations and understandings to then describe the associated theorems. As results, the research pointed to the extension of the concept of variable (IO1), providing more complex generalization processes and the possibility of concretization and dynamization of the concept of constant rate of variation (IO2). In addition, it allowed to show that the process of manifestation of the representation and understanding of the operative invariants of the Linear Functions Conceptual Field happened through actions of concretization, dynamization, comprehension and reformulation provided, respectively, by the stages of description, execution, reflection and debugging the spiral of conceptualization, based on a didactic strategy mediated by computer programming. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-09-04 |
dc.date.accessioned.fl_str_mv |
2019-05-08T19:34:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LESSA, Valéria Espíndola. A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios. 2018. 182 f. Tese (Doutorado em Educação) - Universidade de Passo Fundo, Passo Fundo, RS, 2018. |
dc.identifier.uri.fl_str_mv |
http://tede.upf.br/jspui/handle/tede/1656 |
identifier_str_mv |
LESSA, Valéria Espíndola. A programação de computadores e a função afim: um estudo sobre a representação e a compreensão de invariantes operatórios. 2018. 182 f. Tese (Doutorado em Educação) - Universidade de Passo Fundo, Passo Fundo, RS, 2018. |
url |
http://tede.upf.br/jspui/handle/tede/1656 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-8451285793228477937 |
dc.relation.confidence.fl_str_mv |
500 500 600 |
dc.relation.department.fl_str_mv |
9220855104128391756 |
dc.relation.cnpq.fl_str_mv |
-240345818910352367 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Educação |
dc.publisher.initials.fl_str_mv |
UPF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade de Educação – FAED |
publisher.none.fl_str_mv |
Universidade de Passo Fundo |
dc.source.none.fl_str_mv |
reponame:Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) instname:Universidade de Passo Fundo (UPF) instacron:UPF |
instname_str |
Universidade de Passo Fundo (UPF) |
instacron_str |
UPF |
institution |
UPF |
reponame_str |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
collection |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) |
bitstream.url.fl_str_mv |
http://tede.upf.br:8080/jspui/bitstream/tede/1656/1/license.txt http://tede.upf.br:8080/jspui/bitstream/tede/1656/3/2018ValeriaLessa.pdf |
bitstream.checksum.fl_str_mv |
e0faded76e3df80302a4a0fb3f2bb5f3 d61a55b920d4b34654a24876f77b8e3d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca de teses e dissertações da Universidade de Passo Fundo (BDTD UPF) - Universidade de Passo Fundo (UPF) |
repository.mail.fl_str_mv |
biblio@upf.br || bio@upf.br || cas@upf.br || car@upf.br || lve@upf.br || sar@upf.br || sol@upf.br || upfmundi@upf.br || jucelei@upf.br |
_version_ |
1809092293146181632 |