Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente

Detalhes bibliográficos
Autor(a) principal: Piccoli, Leonardo Bisch
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/193118
Resumo: Estratégias de monitoramento, baseadas na análise da condição de equipamentos utilizando ferramentas de processamento digital de sinais, inteligência artificial e tolerância a falhas, tornam-se cada vez mais necessárias nos processos industriais. As técnicas de manutenção inteligente conferem confiabilidade, disponibilidade e eficácia, e são estudadas, neste trabalho, no atual estado da arte. Porém, grande parte delas utiliza medidas com estados e parâmetros do processo que são dispendiosas e envolvem elevado tempo de amostragem e análise. O objetivo deste trabalho é desenvolver um novo sistema capaz de estimar a condição de saúde de um equipamento a partir das leituras de vibração e torque de sensores, e assim, viabilizar a detecção, predição e identificação de falhas online em atuadores elétricos utilizados em linhas de transporte de petróleo e/ou derivados. Para isso, foi desenvolvida uma técnica que, por meio de um dispositivo computacional, possibilita monitorar, considerando ruído e, de forma interativa, as variações dos parâmetros de um processo físico, tais como: falhas abruptas, incipientes e intermitentes. Isso corresponde às atividades de detecção, identificação de falhas e previsões sobre possíveis problemas que venham a surgir em consequência de pequenos desvios do comportamento normal do sistema. A metodologia empregada é baseada na estrutura do modelo Open Systems Architecture for Condition-Based Maintenance (OSA-CBM), que permite atuar nas seguintes camadas: 1) Aquisição de dados; 2) Manipulação de dados; 3) Monitoramento das condições; 4) Avaliação da saúde O sistema compreende a análise simultânea das propriedades de tempo e frequência do sinal, extração de características e filtragem adaptativa. Uma bancada de testes foi utilizada para reproduzir algumas falhas típicas que podem causar degradação na operação de atuadores fabricados no mercado. O sistema foi denominado Fault Detection System (FDS) e é baseado em técnicas de processamento de sinais que tem como saída um sinal de resíduo ou erro quando na ocorrência de uma falha correspondente nos equipamentos monitorados. A versão em software do sistema foi registrada no Instituto Nacional da Propriedade Industrial (INPI) no "BR 51 2016 000863-6". Uma nova versão para prototipagem em hardware do FDS em conjunto com um bloco auxiliar denominado Fault Detection Index (FDI), que também é proposto neste trabalho, foi desenvolvido na linguagem Verilog e implementado utilizando uma biblioteca Complementary Metal-Oxide-Semiconductor (CMOS) de 90 nm visando baixo consumo de energia ( 654 μW), baixa utilização de área em silício ( 0, 14 mm2) e processamento em tempo real. Os resultados demonstram a eficácia do método de detecção, diagnóstico e identificação de falhas apresentadas em atuadores elétricos empregados para controle de válvulas.
id URGS_044248e2410f58cacae3fa3b6b41e6a6
oai_identifier_str oai:www.lume.ufrgs.br:10183/193118
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Piccoli, Leonardo BischBalen, Tiago RobertoHenriques, Renato Ventura Bayan2019-04-18T02:33:51Z2018http://hdl.handle.net/10183/193118001088914Estratégias de monitoramento, baseadas na análise da condição de equipamentos utilizando ferramentas de processamento digital de sinais, inteligência artificial e tolerância a falhas, tornam-se cada vez mais necessárias nos processos industriais. As técnicas de manutenção inteligente conferem confiabilidade, disponibilidade e eficácia, e são estudadas, neste trabalho, no atual estado da arte. Porém, grande parte delas utiliza medidas com estados e parâmetros do processo que são dispendiosas e envolvem elevado tempo de amostragem e análise. O objetivo deste trabalho é desenvolver um novo sistema capaz de estimar a condição de saúde de um equipamento a partir das leituras de vibração e torque de sensores, e assim, viabilizar a detecção, predição e identificação de falhas online em atuadores elétricos utilizados em linhas de transporte de petróleo e/ou derivados. Para isso, foi desenvolvida uma técnica que, por meio de um dispositivo computacional, possibilita monitorar, considerando ruído e, de forma interativa, as variações dos parâmetros de um processo físico, tais como: falhas abruptas, incipientes e intermitentes. Isso corresponde às atividades de detecção, identificação de falhas e previsões sobre possíveis problemas que venham a surgir em consequência de pequenos desvios do comportamento normal do sistema. A metodologia empregada é baseada na estrutura do modelo Open Systems Architecture for Condition-Based Maintenance (OSA-CBM), que permite atuar nas seguintes camadas: 1) Aquisição de dados; 2) Manipulação de dados; 3) Monitoramento das condições; 4) Avaliação da saúde O sistema compreende a análise simultânea das propriedades de tempo e frequência do sinal, extração de características e filtragem adaptativa. Uma bancada de testes foi utilizada para reproduzir algumas falhas típicas que podem causar degradação na operação de atuadores fabricados no mercado. O sistema foi denominado Fault Detection System (FDS) e é baseado em técnicas de processamento de sinais que tem como saída um sinal de resíduo ou erro quando na ocorrência de uma falha correspondente nos equipamentos monitorados. A versão em software do sistema foi registrada no Instituto Nacional da Propriedade Industrial (INPI) no "BR 51 2016 000863-6". Uma nova versão para prototipagem em hardware do FDS em conjunto com um bloco auxiliar denominado Fault Detection Index (FDI), que também é proposto neste trabalho, foi desenvolvido na linguagem Verilog e implementado utilizando uma biblioteca Complementary Metal-Oxide-Semiconductor (CMOS) de 90 nm visando baixo consumo de energia ( 654 μW), baixa utilização de área em silício ( 0, 14 mm2) e processamento em tempo real. Os resultados demonstram a eficácia do método de detecção, diagnóstico e identificação de falhas apresentadas em atuadores elétricos empregados para controle de válvulas.Monitoring strategies based on the analysis of equipment condition with information derived from digital signal processing, artificial intelligence and fault tolerance tools become increasingly necessary in industrial process. In this context, intelligent maintenance techniques provide reliability, availability and are being increasingly studied in the current state of the art researches. However, most of them are based on measurements with states and process parameters that are costly and involve high sampling and analysis time. In order to avoid this problem, this work presents a new system capable of estimating the health condition of an equipment from the vibration and torque measurements of sensors, thus enabling online detection, prediction and identification of faults in electric actuators. The developed system represents a technique that, by means of a computational device, allows to monitor the variations of the parameters of a physical process such as abrupt, incipient and intermittent failures. This corresponds to the activities of fault detection, identification and prediction of possible problems that may arise due to minor deviations of the normal behavior state of the system. The methodology is based on the Open Systems Architecture for Condition-Based Maintenance (OSA-CBM) framework, which allows to act in the following layers: 1) Data acquisition; 2) Data manipulation; 3) Condition monitoring; 4) Health assessment. The system comprises the simultaneous analysis of signal time and frequency properties, feature extraction and adaptive filtering A testbench structure has been used to reproduce some typical faults that can cause degradation in the operation of the available commercial actuators. The results show the effectiveness of the method of detection, diagnosis and identification of faults that may occur in electric valves. The system is denominated Fault Detection System (FDS) and it is based on digital signal processing techniques producing a residue signal or error in the occurrence of a corresponding fault in the monitored equipment. A software version of the system was registered with the Instituto Nacional da Propriedade Industrial (INPI) no "BR 51 2016 000863-6". A new version for hardware prototyping of FDS together with the Fault Detection Index (FDI), which is also proposed in this work, was using Ver- ilog language and implemented in a 90 nm Complementary Metal-Oxide-Semiconductor (CMOS) library for low power consumption ( 654 μW), low silicon area utilization ( 0.14 mm2) and real time processing. The results demonstrate the effectiveness of the method of detection, diagnosis and identification of faults present in electric actuators used for controling fluidic valves.application/pdfporMicroeletrônicaCircuitos digitaisTolerancia : FalhasIntelligent maintenanceReal time processingIntegrated circuitsFault toleranceVerilogMicroelectronicsDesenvolvimento de um sistema em chip de processamento online para manutenção inteligenteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em MicroeletrônicaPorto Alegre, BR-RS2018doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001088914.pdf.txt001088914.pdf.txtExtracted Texttext/plain259564http://www.lume.ufrgs.br/bitstream/10183/193118/2/001088914.pdf.txt517cd7bafbc8246e3b88dd230f1f2cc9MD52ORIGINAL001088914.pdfTexto completoapplication/pdf9739661http://www.lume.ufrgs.br/bitstream/10183/193118/1/001088914.pdf385e05585ae22c39a89e21dcad535366MD5110183/1931182019-04-19 02:34:16.608652oai:www.lume.ufrgs.br:10183/193118Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532019-04-19T05:34:16Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
title Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
spellingShingle Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
Piccoli, Leonardo Bisch
Microeletrônica
Circuitos digitais
Tolerancia : Falhas
Intelligent maintenance
Real time processing
Integrated circuits
Fault tolerance
Verilog
Microelectronics
title_short Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
title_full Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
title_fullStr Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
title_full_unstemmed Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
title_sort Desenvolvimento de um sistema em chip de processamento online para manutenção inteligente
author Piccoli, Leonardo Bisch
author_facet Piccoli, Leonardo Bisch
author_role author
dc.contributor.author.fl_str_mv Piccoli, Leonardo Bisch
dc.contributor.advisor1.fl_str_mv Balen, Tiago Roberto
dc.contributor.advisor-co1.fl_str_mv Henriques, Renato Ventura Bayan
contributor_str_mv Balen, Tiago Roberto
Henriques, Renato Ventura Bayan
dc.subject.por.fl_str_mv Microeletrônica
Circuitos digitais
Tolerancia : Falhas
topic Microeletrônica
Circuitos digitais
Tolerancia : Falhas
Intelligent maintenance
Real time processing
Integrated circuits
Fault tolerance
Verilog
Microelectronics
dc.subject.eng.fl_str_mv Intelligent maintenance
Real time processing
Integrated circuits
Fault tolerance
Verilog
Microelectronics
description Estratégias de monitoramento, baseadas na análise da condição de equipamentos utilizando ferramentas de processamento digital de sinais, inteligência artificial e tolerância a falhas, tornam-se cada vez mais necessárias nos processos industriais. As técnicas de manutenção inteligente conferem confiabilidade, disponibilidade e eficácia, e são estudadas, neste trabalho, no atual estado da arte. Porém, grande parte delas utiliza medidas com estados e parâmetros do processo que são dispendiosas e envolvem elevado tempo de amostragem e análise. O objetivo deste trabalho é desenvolver um novo sistema capaz de estimar a condição de saúde de um equipamento a partir das leituras de vibração e torque de sensores, e assim, viabilizar a detecção, predição e identificação de falhas online em atuadores elétricos utilizados em linhas de transporte de petróleo e/ou derivados. Para isso, foi desenvolvida uma técnica que, por meio de um dispositivo computacional, possibilita monitorar, considerando ruído e, de forma interativa, as variações dos parâmetros de um processo físico, tais como: falhas abruptas, incipientes e intermitentes. Isso corresponde às atividades de detecção, identificação de falhas e previsões sobre possíveis problemas que venham a surgir em consequência de pequenos desvios do comportamento normal do sistema. A metodologia empregada é baseada na estrutura do modelo Open Systems Architecture for Condition-Based Maintenance (OSA-CBM), que permite atuar nas seguintes camadas: 1) Aquisição de dados; 2) Manipulação de dados; 3) Monitoramento das condições; 4) Avaliação da saúde O sistema compreende a análise simultânea das propriedades de tempo e frequência do sinal, extração de características e filtragem adaptativa. Uma bancada de testes foi utilizada para reproduzir algumas falhas típicas que podem causar degradação na operação de atuadores fabricados no mercado. O sistema foi denominado Fault Detection System (FDS) e é baseado em técnicas de processamento de sinais que tem como saída um sinal de resíduo ou erro quando na ocorrência de uma falha correspondente nos equipamentos monitorados. A versão em software do sistema foi registrada no Instituto Nacional da Propriedade Industrial (INPI) no "BR 51 2016 000863-6". Uma nova versão para prototipagem em hardware do FDS em conjunto com um bloco auxiliar denominado Fault Detection Index (FDI), que também é proposto neste trabalho, foi desenvolvido na linguagem Verilog e implementado utilizando uma biblioteca Complementary Metal-Oxide-Semiconductor (CMOS) de 90 nm visando baixo consumo de energia ( 654 μW), baixa utilização de área em silício ( 0, 14 mm2) e processamento em tempo real. Os resultados demonstram a eficácia do método de detecção, diagnóstico e identificação de falhas apresentadas em atuadores elétricos empregados para controle de válvulas.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-04-18T02:33:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/193118
dc.identifier.nrb.pt_BR.fl_str_mv 001088914
url http://hdl.handle.net/10183/193118
identifier_str_mv 001088914
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/193118/2/001088914.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/193118/1/001088914.pdf
bitstream.checksum.fl_str_mv 517cd7bafbc8246e3b88dd230f1f2cc9
385e05585ae22c39a89e21dcad535366
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085475142074368