Sistema embarcado para a manutenção inteligente de atuadores elétricos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/22808 |
Resumo: | O elevado custo de manutenção nos ambientes industriais motivou pesquisas de novas técnicas para melhorar as ações de reparos. Com a evolução tecnológica, principalmente da eletrônica, que proporcionou o uso de sistemas embarcados para melhorar as atividades de manutenção, estas agregaram inteligência e evoluíram para uma manutenção pró-ativa. Através de ferramentas de processamento de sinais, inteligência artificial e tolerância a falhas, surgiram novas abordagens para os sistemas de monitoramento a serviço da equipe de manutenção. Os ditos sistemas de manutenção inteligente, cuja tarefa é realizar testes em funcionamento (on-line) nos equipamentos industriais, promovem novos modelos de confiabilidade e disponibilidade. Tais sistemas são baseados nos conceitos de tolerância a falhas, e visam detectar, diagnosticar e predizer a ocorrência de falhas. Deste modo, fornece-se aos engenheiros de manutenção a informação antecipada do estado de comportamento do equipamento antes mesmo deste manifestar uma falha, reduzindo custos, aumentando a vida útil e tornando previsível o reparo. Para o desenvolvimento do sistema de manutenção inteligente objeto deste trabalho, foram estudadas técnicas de inteligência artificial (redes neurais artificiais), técnicas de projeto de sistemas embarcados e de prototipação em plataformas de hardware. No presente trabalho, a rede neural Mapas Auto-Organizáveis foi adotada como ferramenta base para detecção e diagnóstico de falhas. Esta foi prototipada numa plataforma de sistema embarcado baseada na tecnologia FPGA (Field Programmable Gate Array). Como estudo de caso, uma válvula elétrica utilizada em dutos para transporte de petróleo foi definida como aplicação alvo dos experimentos. Através de um modelo matemático, um conjunto de dados representativo do comportamento da válvula foi simulado e utilizado como entrada do sistema proposto. Estes dados visam o treinamento da rede neural e visam fornecer casos de teste para experimentação no sistema. Os experimentos executados em software validaram o uso da rede neural como técnica para detecção e diagnóstico de falhas em válvulas elétricas. Por fim, também realizou-se experimentos a fim de validar o projeto do sistema embarcado, comparando-se os resultado obtidos com este aos resultados obtidos a partir de testes em software. Os resultados revelam a escolha correta do uso da rede neural e o correto projeto do sistema embarcado para desempenhar as tarefas de detecção e diagnóstico de falhas em válvulas elétricas. |
id |
URGS_39ae703348494e54916b75157f4bc1a3 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/22808 |
network_acronym_str |
URGS |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
repository_id_str |
1853 |
spelling |
Bosa, Jefferson LuizLubaszewski, Marcelo Soares2010-05-25T04:17:51Z2009http://hdl.handle.net/10183/22808000737475O elevado custo de manutenção nos ambientes industriais motivou pesquisas de novas técnicas para melhorar as ações de reparos. Com a evolução tecnológica, principalmente da eletrônica, que proporcionou o uso de sistemas embarcados para melhorar as atividades de manutenção, estas agregaram inteligência e evoluíram para uma manutenção pró-ativa. Através de ferramentas de processamento de sinais, inteligência artificial e tolerância a falhas, surgiram novas abordagens para os sistemas de monitoramento a serviço da equipe de manutenção. Os ditos sistemas de manutenção inteligente, cuja tarefa é realizar testes em funcionamento (on-line) nos equipamentos industriais, promovem novos modelos de confiabilidade e disponibilidade. Tais sistemas são baseados nos conceitos de tolerância a falhas, e visam detectar, diagnosticar e predizer a ocorrência de falhas. Deste modo, fornece-se aos engenheiros de manutenção a informação antecipada do estado de comportamento do equipamento antes mesmo deste manifestar uma falha, reduzindo custos, aumentando a vida útil e tornando previsível o reparo. Para o desenvolvimento do sistema de manutenção inteligente objeto deste trabalho, foram estudadas técnicas de inteligência artificial (redes neurais artificiais), técnicas de projeto de sistemas embarcados e de prototipação em plataformas de hardware. No presente trabalho, a rede neural Mapas Auto-Organizáveis foi adotada como ferramenta base para detecção e diagnóstico de falhas. Esta foi prototipada numa plataforma de sistema embarcado baseada na tecnologia FPGA (Field Programmable Gate Array). Como estudo de caso, uma válvula elétrica utilizada em dutos para transporte de petróleo foi definida como aplicação alvo dos experimentos. Através de um modelo matemático, um conjunto de dados representativo do comportamento da válvula foi simulado e utilizado como entrada do sistema proposto. Estes dados visam o treinamento da rede neural e visam fornecer casos de teste para experimentação no sistema. Os experimentos executados em software validaram o uso da rede neural como técnica para detecção e diagnóstico de falhas em válvulas elétricas. Por fim, também realizou-se experimentos a fim de validar o projeto do sistema embarcado, comparando-se os resultado obtidos com este aos resultados obtidos a partir de testes em software. Os resultados revelam a escolha correta do uso da rede neural e o correto projeto do sistema embarcado para desempenhar as tarefas de detecção e diagnóstico de falhas em válvulas elétricas.The high costs of maintenance in industrial environments have motivated research for new techniques to improve repair activities. The technological progress, especially in the electronics field, has provided for the use of embedded systems to improve repair, by adding intelligence to the system and turning the maintenance a proactive activity. Through tools like signal processing, artificial intelligence and fault-tolerance, new approaches to monitoring systems have emerged to serve the maintenance staff, leading to new models of reliability and availability. The main goal of these systems, also called intelligent maintenance systems, is to perform in-operation (on-line) test of industrial equipments. These systems are built based on fault-tolerance concepts, and used for the detection, the diagnosis and the prognosis of faults. They provide the maintenance engineers with information on the equipment behavior, prior to the occurrence of failures, reducing maintenance costs, increasing the system lifetime and making it possible to schedule repairing stops. To develop the intelligent maintenance system addressed in this dissertation, artificial intelligence (neural networks), embedded systems design and hardware prototyping techniques were studied. In this work, the neural network Self-Organizing Maps (SOM) was defined as the basic tool for the detection and the diagnosis of faults. The SOM was prototyped in an embedded system platform based on the FPGA technology (Field Programmable Gate Array). As a case study, the experiments were performed on an electric valve used in a pipe network for oil transportation. Through a mathematical model, a data set representative of the valve behavior was obtained and used as input to the proposed maintenance system. These data were used for neural network training and also provided test cases for system monitoring. The experiments were performed in software to validate the chosen neural network as the technique for the detection and diagnosis of faults in the electrical valve. Finally, experiments to validate the embedded system design were also performed, so as to compare the obtained results to those resulting from the software tests. The results show the correct choice of the neural network and the correct embedded systems design to perform the activities for the detection and diagnosis of faults in the electrical valve.application/pdfporMicroeletrônicaSistemas embarcadosTolerancia : FalhasOn-line testFault-toleranceSelf-organizing mapsEmbedded systemsFPGAMaintenanceSistema embarcado para a manutenção inteligente de atuadores elétricosEmbedded systems for intelligent maintenance of electrical actuators info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2009mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT000737475.pdf.txt000737475.pdf.txtExtracted Texttext/plain425806http://www.lume.ufrgs.br/bitstream/10183/22808/2/000737475.pdf.txt669f88c8774edd007db1334679e7dec7MD52ORIGINAL000737475.pdf000737475.pdfTexto completoapplication/pdf8097223http://www.lume.ufrgs.br/bitstream/10183/22808/1/000737475.pdf04211a4893b07e785f9bdfa74079e3ffMD51THUMBNAIL000737475.pdf.jpg000737475.pdf.jpgGenerated Thumbnailimage/jpeg1076http://www.lume.ufrgs.br/bitstream/10183/22808/3/000737475.pdf.jpgb9ddef900b3d706dfbb77d83bd2700d6MD5310183/228082018-10-17 08:44:37.407oai:www.lume.ufrgs.br:10183/22808Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-17T11:44:37Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
dc.title.alternative.en.fl_str_mv |
Embedded systems for intelligent maintenance of electrical actuators |
title |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
spellingShingle |
Sistema embarcado para a manutenção inteligente de atuadores elétricos Bosa, Jefferson Luiz Microeletrônica Sistemas embarcados Tolerancia : Falhas On-line test Fault-tolerance Self-organizing maps Embedded systems FPGA Maintenance |
title_short |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
title_full |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
title_fullStr |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
title_full_unstemmed |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
title_sort |
Sistema embarcado para a manutenção inteligente de atuadores elétricos |
author |
Bosa, Jefferson Luiz |
author_facet |
Bosa, Jefferson Luiz |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bosa, Jefferson Luiz |
dc.contributor.advisor1.fl_str_mv |
Lubaszewski, Marcelo Soares |
contributor_str_mv |
Lubaszewski, Marcelo Soares |
dc.subject.por.fl_str_mv |
Microeletrônica Sistemas embarcados Tolerancia : Falhas |
topic |
Microeletrônica Sistemas embarcados Tolerancia : Falhas On-line test Fault-tolerance Self-organizing maps Embedded systems FPGA Maintenance |
dc.subject.eng.fl_str_mv |
On-line test Fault-tolerance Self-organizing maps Embedded systems FPGA Maintenance |
description |
O elevado custo de manutenção nos ambientes industriais motivou pesquisas de novas técnicas para melhorar as ações de reparos. Com a evolução tecnológica, principalmente da eletrônica, que proporcionou o uso de sistemas embarcados para melhorar as atividades de manutenção, estas agregaram inteligência e evoluíram para uma manutenção pró-ativa. Através de ferramentas de processamento de sinais, inteligência artificial e tolerância a falhas, surgiram novas abordagens para os sistemas de monitoramento a serviço da equipe de manutenção. Os ditos sistemas de manutenção inteligente, cuja tarefa é realizar testes em funcionamento (on-line) nos equipamentos industriais, promovem novos modelos de confiabilidade e disponibilidade. Tais sistemas são baseados nos conceitos de tolerância a falhas, e visam detectar, diagnosticar e predizer a ocorrência de falhas. Deste modo, fornece-se aos engenheiros de manutenção a informação antecipada do estado de comportamento do equipamento antes mesmo deste manifestar uma falha, reduzindo custos, aumentando a vida útil e tornando previsível o reparo. Para o desenvolvimento do sistema de manutenção inteligente objeto deste trabalho, foram estudadas técnicas de inteligência artificial (redes neurais artificiais), técnicas de projeto de sistemas embarcados e de prototipação em plataformas de hardware. No presente trabalho, a rede neural Mapas Auto-Organizáveis foi adotada como ferramenta base para detecção e diagnóstico de falhas. Esta foi prototipada numa plataforma de sistema embarcado baseada na tecnologia FPGA (Field Programmable Gate Array). Como estudo de caso, uma válvula elétrica utilizada em dutos para transporte de petróleo foi definida como aplicação alvo dos experimentos. Através de um modelo matemático, um conjunto de dados representativo do comportamento da válvula foi simulado e utilizado como entrada do sistema proposto. Estes dados visam o treinamento da rede neural e visam fornecer casos de teste para experimentação no sistema. Os experimentos executados em software validaram o uso da rede neural como técnica para detecção e diagnóstico de falhas em válvulas elétricas. Por fim, também realizou-se experimentos a fim de validar o projeto do sistema embarcado, comparando-se os resultado obtidos com este aos resultados obtidos a partir de testes em software. Os resultados revelam a escolha correta do uso da rede neural e o correto projeto do sistema embarcado para desempenhar as tarefas de detecção e diagnóstico de falhas em válvulas elétricas. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009 |
dc.date.accessioned.fl_str_mv |
2010-05-25T04:17:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/22808 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000737475 |
url |
http://hdl.handle.net/10183/22808 |
identifier_str_mv |
000737475 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/22808/2/000737475.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/22808/1/000737475.pdf http://www.lume.ufrgs.br/bitstream/10183/22808/3/000737475.pdf.jpg |
bitstream.checksum.fl_str_mv |
669f88c8774edd007db1334679e7dec7 04211a4893b07e785f9bdfa74079e3ff b9ddef900b3d706dfbb77d83bd2700d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
_version_ |
1810085172933033984 |