O problema do pixel mistura: um estudo comparativo

Detalhes bibliográficos
Autor(a) principal: Caimi, Daniel
Data de Publicação: 1993
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/1373
Resumo: Os satélites para sensoriamento remoto atualmente dispoívies à comunidade científica possuem diferenies resoluções espaciais, por exemplo: SPOT 20 e 10 metros, LANDSAT-TM 30 metros e NOA-AVHRR 1100 metros. Essa resolução frequentemente não é grande o suficiente para um grande número de aplicações que necessitam de uma percepção da cena mais detalhada. Muitas vezes, no interior de uma célula de resolução (pixel) mais de uma classe ocorre. Este caso é conhecido como pixel mistura. Na classificação de imagens obtidas por sensoriamento remoto é comum a utilização de metodologias que atribuem somente uma classe a um pixel, como o procedimento clássico da máxima verossimilhança. Esse procedimento resulta frequentemente em uma estimação errônea das áreas ocupadas pelas classes presentes na cena. Em alguns casos, especialmente quando não há uma classe dominante, isto pode ser a fonte de um erro significativo. Desde o início dos anos 70, diferentes metodologias têm sido propostas para o trabalho num nível de subpixel. A grande vantagem do trabalho nesse nível é que um pixel não é necessariamente atribuído a somente uma classe. O pixel tem um grau que o correlaciona a cada classe: de zero(se a classe não ocorre no pixel) até 1 (a classe ocorre no pixel inteiro). Assim, cada pixel tem um vetor associado que estima a proporção de cada classe nele. A metodologia mais comumente utilizada considera a refletância do pixel mistura como uma combinação linear da refletância média de cada classe componente. De acordo com essa visão as refletâncias associadas às classes componentes são consideradas constantes conhecidas i.e., não são variáveis aleatórias. Assim, a proporção de cada classe no pixel é obtida pela resolução de um sistema de equações lineares. Uma outra metodologia é assumir as refletâncias que caracterizam as classes como sendo variáveis aleatórias. Nesta visão, as informações a respeito das distribuições das classes é utilizada. A estimativa das proporções de cada classe é obtida pelo vetor de proporções que maximiza a função de verossimilhança. Mais recentemente, uma visão diferente foi proposta: a utilização da lógica fuzzy. Esta metodologia utiliza o conceito de função de pertinência que é essencial à teoria dos conjuntos fuzzy. Esta função utiliza elementos com natureza estatística ou não para a estimação das proporções. No presente trabalho, duas funções de pertinência foram definidas: a primeira baseada na função densidade probabilidade gaussiana e a segunda baseada diretamente na distância de Mahalanobis. O objetivo deste estudo é avaliar cada uma das metodologias anteriores em termos de acurácia, performance e dados necessários. Para este objetivo, as metodologias foram implementadas computacionalmente e alimentadas com imagens LANDSAT-TM. Para a avaliação da acurácia dos modelos um estudo qualitativo foi executado.
id URGS_ad089a246c11bb5a8cf496c264259290
oai_identifier_str oai:www.lume.ufrgs.br:10183/1373
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Caimi, DanielHaertel, Vitor Francisco de Araújo2007-06-06T17:11:56Z1993http://hdl.handle.net/10183/1373000106990Os satélites para sensoriamento remoto atualmente dispoívies à comunidade científica possuem diferenies resoluções espaciais, por exemplo: SPOT 20 e 10 metros, LANDSAT-TM 30 metros e NOA-AVHRR 1100 metros. Essa resolução frequentemente não é grande o suficiente para um grande número de aplicações que necessitam de uma percepção da cena mais detalhada. Muitas vezes, no interior de uma célula de resolução (pixel) mais de uma classe ocorre. Este caso é conhecido como pixel mistura. Na classificação de imagens obtidas por sensoriamento remoto é comum a utilização de metodologias que atribuem somente uma classe a um pixel, como o procedimento clássico da máxima verossimilhança. Esse procedimento resulta frequentemente em uma estimação errônea das áreas ocupadas pelas classes presentes na cena. Em alguns casos, especialmente quando não há uma classe dominante, isto pode ser a fonte de um erro significativo. Desde o início dos anos 70, diferentes metodologias têm sido propostas para o trabalho num nível de subpixel. A grande vantagem do trabalho nesse nível é que um pixel não é necessariamente atribuído a somente uma classe. O pixel tem um grau que o correlaciona a cada classe: de zero(se a classe não ocorre no pixel) até 1 (a classe ocorre no pixel inteiro). Assim, cada pixel tem um vetor associado que estima a proporção de cada classe nele. A metodologia mais comumente utilizada considera a refletância do pixel mistura como uma combinação linear da refletância média de cada classe componente. De acordo com essa visão as refletâncias associadas às classes componentes são consideradas constantes conhecidas i.e., não são variáveis aleatórias. Assim, a proporção de cada classe no pixel é obtida pela resolução de um sistema de equações lineares. Uma outra metodologia é assumir as refletâncias que caracterizam as classes como sendo variáveis aleatórias. Nesta visão, as informações a respeito das distribuições das classes é utilizada. A estimativa das proporções de cada classe é obtida pelo vetor de proporções que maximiza a função de verossimilhança. Mais recentemente, uma visão diferente foi proposta: a utilização da lógica fuzzy. Esta metodologia utiliza o conceito de função de pertinência que é essencial à teoria dos conjuntos fuzzy. Esta função utiliza elementos com natureza estatística ou não para a estimação das proporções. No presente trabalho, duas funções de pertinência foram definidas: a primeira baseada na função densidade probabilidade gaussiana e a segunda baseada diretamente na distância de Mahalanobis. O objetivo deste estudo é avaliar cada uma das metodologias anteriores em termos de acurácia, performance e dados necessários. Para este objetivo, as metodologias foram implementadas computacionalmente e alimentadas com imagens LANDSAT-TM. Para a avaliação da acurácia dos modelos um estudo qualitativo foi executado.application/pdfporPixel misturaProcessamento de imagensSensoriamento remotoClassificacao multiespectralO problema do pixel mistura: um estudo comparativoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulCentro Estadual de Pesquisas em Sensoriamento Remoto e MeteorologiaCurso de Pós-Graduação em Sensoriamento RemotoPorto Alegre, RS1993mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000106990.pdf000106990.pdfTexto completoapplication/pdf7134004http://www.lume.ufrgs.br/bitstream/10183/1373/1/000106990.pdfcff939cecab2aebc910f4e6913de4072MD51TEXT000106990.pdf.txt000106990.pdf.txtExtracted Texttext/plain12192http://www.lume.ufrgs.br/bitstream/10183/1373/2/000106990.pdf.txtf3cfd8fe1bc1f09e150525f774e7f475MD52THUMBNAIL000106990.pdf.jpg000106990.pdf.jpgGenerated Thumbnailimage/jpeg1380http://www.lume.ufrgs.br/bitstream/10183/1373/3/000106990.pdf.jpg74dc8d67246e398e63c1d052add5b9baMD5310183/13732021-08-18 04:50:41.998383oai:www.lume.ufrgs.br:10183/1373Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-08-18T07:50:41Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv O problema do pixel mistura: um estudo comparativo
title O problema do pixel mistura: um estudo comparativo
spellingShingle O problema do pixel mistura: um estudo comparativo
Caimi, Daniel
Pixel mistura
Processamento de imagens
Sensoriamento remoto
Classificacao multiespectral
title_short O problema do pixel mistura: um estudo comparativo
title_full O problema do pixel mistura: um estudo comparativo
title_fullStr O problema do pixel mistura: um estudo comparativo
title_full_unstemmed O problema do pixel mistura: um estudo comparativo
title_sort O problema do pixel mistura: um estudo comparativo
author Caimi, Daniel
author_facet Caimi, Daniel
author_role author
dc.contributor.author.fl_str_mv Caimi, Daniel
dc.contributor.advisor1.fl_str_mv Haertel, Vitor Francisco de Araújo
contributor_str_mv Haertel, Vitor Francisco de Araújo
dc.subject.por.fl_str_mv Pixel mistura
Processamento de imagens
Sensoriamento remoto
Classificacao multiespectral
topic Pixel mistura
Processamento de imagens
Sensoriamento remoto
Classificacao multiespectral
description Os satélites para sensoriamento remoto atualmente dispoívies à comunidade científica possuem diferenies resoluções espaciais, por exemplo: SPOT 20 e 10 metros, LANDSAT-TM 30 metros e NOA-AVHRR 1100 metros. Essa resolução frequentemente não é grande o suficiente para um grande número de aplicações que necessitam de uma percepção da cena mais detalhada. Muitas vezes, no interior de uma célula de resolução (pixel) mais de uma classe ocorre. Este caso é conhecido como pixel mistura. Na classificação de imagens obtidas por sensoriamento remoto é comum a utilização de metodologias que atribuem somente uma classe a um pixel, como o procedimento clássico da máxima verossimilhança. Esse procedimento resulta frequentemente em uma estimação errônea das áreas ocupadas pelas classes presentes na cena. Em alguns casos, especialmente quando não há uma classe dominante, isto pode ser a fonte de um erro significativo. Desde o início dos anos 70, diferentes metodologias têm sido propostas para o trabalho num nível de subpixel. A grande vantagem do trabalho nesse nível é que um pixel não é necessariamente atribuído a somente uma classe. O pixel tem um grau que o correlaciona a cada classe: de zero(se a classe não ocorre no pixel) até 1 (a classe ocorre no pixel inteiro). Assim, cada pixel tem um vetor associado que estima a proporção de cada classe nele. A metodologia mais comumente utilizada considera a refletância do pixel mistura como uma combinação linear da refletância média de cada classe componente. De acordo com essa visão as refletâncias associadas às classes componentes são consideradas constantes conhecidas i.e., não são variáveis aleatórias. Assim, a proporção de cada classe no pixel é obtida pela resolução de um sistema de equações lineares. Uma outra metodologia é assumir as refletâncias que caracterizam as classes como sendo variáveis aleatórias. Nesta visão, as informações a respeito das distribuições das classes é utilizada. A estimativa das proporções de cada classe é obtida pelo vetor de proporções que maximiza a função de verossimilhança. Mais recentemente, uma visão diferente foi proposta: a utilização da lógica fuzzy. Esta metodologia utiliza o conceito de função de pertinência que é essencial à teoria dos conjuntos fuzzy. Esta função utiliza elementos com natureza estatística ou não para a estimação das proporções. No presente trabalho, duas funções de pertinência foram definidas: a primeira baseada na função densidade probabilidade gaussiana e a segunda baseada diretamente na distância de Mahalanobis. O objetivo deste estudo é avaliar cada uma das metodologias anteriores em termos de acurácia, performance e dados necessários. Para este objetivo, as metodologias foram implementadas computacionalmente e alimentadas com imagens LANDSAT-TM. Para a avaliação da acurácia dos modelos um estudo qualitativo foi executado.
publishDate 1993
dc.date.issued.fl_str_mv 1993
dc.date.accessioned.fl_str_mv 2007-06-06T17:11:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/1373
dc.identifier.nrb.pt_BR.fl_str_mv 000106990
url http://hdl.handle.net/10183/1373
identifier_str_mv 000106990
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/1373/1/000106990.pdf
http://www.lume.ufrgs.br/bitstream/10183/1373/2/000106990.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/1373/3/000106990.pdf.jpg
bitstream.checksum.fl_str_mv cff939cecab2aebc910f4e6913de4072
f3cfd8fe1bc1f09e150525f774e7f475
74dc8d67246e398e63c1d052add5b9ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1810085000513585152