Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais

Detalhes bibliográficos
Autor(a) principal: FERREIRA, Máverick André Dionísio
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7864
Resumo: The growth of distance learning in Brazil has contributed to democratizing the access to education, especially in higher education. Despite of that, physical distance can cause students a feeling of isolation, which in turn consists of one of the variables that can influence the learner to evade. To avoid such a problem, Virtual Learning Environments often encompass collaborative resources like discussion forums. The literature points that forums are highly collaborative resources because they provide a platform where the participants can debate to enrich their knowledge construction experience. However, the forums collaborative potential has not been fully exploited because most of the messages published in the discussions are from students to the instructor. Thus, it is necessary to provide methods capable of helping students to develop the ability to collaborate. For this, the instructors need to follow up the whole progress of the discussion, and this could be an enormous work as the number of posts increases. It is important to emphasize that the establishment of collaborative discussion in the forums decrease the students‘ sense of isolation, which promote the development of skills such as critical/reflective thinking. This dissertation presents an approach based on Text Mining, Machine Learning, and Evolutionary Computing, to automatically extract Learning Analytics related to collaboration in forums messages conducted in Portuguese. The proposed approach was based on a collaborative identification model, proposed by MURPHY (2004), of which five collaborative features were explored: soliciting feedback; Answer questions; Praise/Express appreciation by the other participants; Share information and resources and; Recognize the presence of the group. To evaluate the performance of the approach were conducted experiments in four databases, composed of messages from educational forums. The proposed method reached F-measure of up to 0.98. In order to measure the impacts of pedagogical mediation and the collaboration of students, a quasi-experiment was carried out in a real educational environment. The results showed that the approach provided the collaborative scenario of the forum for the mediator, enabling a formative evaluation, besides contributing to the increase of the students’ collaboration rates.
id URPE_230842982c9db78c951811a075973056
oai_identifier_str oai:tede2:tede2/7864
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling MELLO, Rafael Ferreira Leite deMELLO, Rafael Ferreira Leite deLINS, Rafael DueireRODRIGUES, Rodrigo Linshttp://lattes.cnpq.br/5284345925713990FERREIRA, Máverick André Dionísio2019-02-26T13:18:52Z2018-02-26FERREIRA, Máverick André Dionísio. Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais. 2018. 79 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7864The growth of distance learning in Brazil has contributed to democratizing the access to education, especially in higher education. Despite of that, physical distance can cause students a feeling of isolation, which in turn consists of one of the variables that can influence the learner to evade. To avoid such a problem, Virtual Learning Environments often encompass collaborative resources like discussion forums. The literature points that forums are highly collaborative resources because they provide a platform where the participants can debate to enrich their knowledge construction experience. However, the forums collaborative potential has not been fully exploited because most of the messages published in the discussions are from students to the instructor. Thus, it is necessary to provide methods capable of helping students to develop the ability to collaborate. For this, the instructors need to follow up the whole progress of the discussion, and this could be an enormous work as the number of posts increases. It is important to emphasize that the establishment of collaborative discussion in the forums decrease the students‘ sense of isolation, which promote the development of skills such as critical/reflective thinking. This dissertation presents an approach based on Text Mining, Machine Learning, and Evolutionary Computing, to automatically extract Learning Analytics related to collaboration in forums messages conducted in Portuguese. The proposed approach was based on a collaborative identification model, proposed by MURPHY (2004), of which five collaborative features were explored: soliciting feedback; Answer questions; Praise/Express appreciation by the other participants; Share information and resources and; Recognize the presence of the group. To evaluate the performance of the approach were conducted experiments in four databases, composed of messages from educational forums. The proposed method reached F-measure of up to 0.98. In order to measure the impacts of pedagogical mediation and the collaboration of students, a quasi-experiment was carried out in a real educational environment. The results showed that the approach provided the collaborative scenario of the forum for the mediator, enabling a formative evaluation, besides contributing to the increase of the students’ collaboration rates.O crescimento da Educação a Distância (EAD), no Brasil, tem contribuído para democratizar o acesso à educação, principalmente, dos níveis técnico e superior. Apesar disso, a distância física pode provocar nos estudantes uma sensação de isolamento que, por sua vez, consiste de uma das variáveis com poder de influenciar o aprendiz a evadir. Visando minorar o sentimento de abandono, os Ambientes Virtuais de Aprendizagem (AVA) contam com os fóruns de discussão. Estes são pontuados na literatura como altamente colaborativos, por possibilitarem a construção de conhecimento por meio de debates. No entanto, o potencial colaborativo dos fóruns pouco tem sido explorado pois a maioria das postagens inseridas nas discussões são direcionadas do estudante para o mediador. Faz-se necessário o provimento de métodos capazes dar suporte aos estudantes no desenvolvimento de habilidades colaborativas. Os moderadores precisam acompanhar todo o andamento da discussão e isso configura um trabalho intensivo a medida em que o número de postagens aumenta no decorrer do curso. É importante ressaltar que o estabelecimento de uma discussão colaborativa nos fóruns além de diminuir o surgimento da impressão de isolamento, por parte do estudante, incentiva o desenvolvimento de habilidades como o pensamento crítico/reflexivo. Esta dissertação de mestrado apresenta uma abordagem baseada em técnicas de Mineração de Textos, Aprendizagem de Máquina e Computação Evolucionária, para extrair automaticamente Learning Analytics (LA) relacionadas à colaboração em postagens de fóruns educacionais conduzidos em português. A solução proposta foi fundamentada em um modelo de identificação de colaboração, proposto por MURPHY (2004), do qual foram consideradas cinco características colaborativas: Solicitar feedback; Responder a questões; Elogiar/expressar apreciação pelos outros participantes; Partilhar informações e recursos e; Reconhecer a presença do grupo. Para avaliar o desempenho do enfoque dado, foram conduzidos experimentos em quatro bases de dados, compostas por postagens oriundas de fóruns educacionais, chegando a atingir F-measure de até 0,98. Com o objetivo de mensurar os impactos na mediação pedagógica e na colaboração dos estudantes, também foi realizado um quase-experimento em um ambiente educacional real. Os resultados mostraram indícios de que a abordagem tem potencial para fornecer o cenário colaborativo do fórum para o mediador e para os estudantes.Submitted by Mario BC (mario@bc.ufrpe.br) on 2019-02-26T13:18:52Z No. of bitstreams: 1 Maverick Andre Dionisio Ferreira.pdf: 2159978 bytes, checksum: 124f8c08d0a72c9101e0681e87100dac (MD5)Made available in DSpace on 2019-02-26T13:18:52Z (GMT). No. of bitstreams: 1 Maverick Andre Dionisio Ferreira.pdf: 2159978 bytes, checksum: 124f8c08d0a72c9101e0681e87100dac (MD5) Previous issue date: 2018-02-26application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Informática AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaFóruns de discussãoLearning analyticsMineração de textoComputação evolucionáriaCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOUma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-8268485641417162699600600600-67745551403961205013671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALMaverick Andre Dionisio Ferreira.pdfMaverick Andre Dionisio Ferreira.pdfapplication/pdf2159978http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7864/2/Maverick+Andre+Dionisio+Ferreira.pdf124f8c08d0a72c9101e0681e87100dacMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7864/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/78642019-02-26 10:18:52.567oai:tede2:tede2/7864Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:36:13.189181Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
title Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
spellingShingle Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
FERREIRA, Máverick André Dionísio
Fóruns de discussão
Learning analytics
Mineração de texto
Computação evolucionária
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
title_full Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
title_fullStr Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
title_full_unstemmed Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
title_sort Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais
author FERREIRA, Máverick André Dionísio
author_facet FERREIRA, Máverick André Dionísio
author_role author
dc.contributor.advisor1.fl_str_mv MELLO, Rafael Ferreira Leite de
dc.contributor.referee1.fl_str_mv MELLO, Rafael Ferreira Leite de
dc.contributor.referee2.fl_str_mv LINS, Rafael Dueire
dc.contributor.referee3.fl_str_mv RODRIGUES, Rodrigo Lins
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5284345925713990
dc.contributor.author.fl_str_mv FERREIRA, Máverick André Dionísio
contributor_str_mv MELLO, Rafael Ferreira Leite de
MELLO, Rafael Ferreira Leite de
LINS, Rafael Dueire
RODRIGUES, Rodrigo Lins
dc.subject.por.fl_str_mv Fóruns de discussão
Learning analytics
Mineração de texto
Computação evolucionária
topic Fóruns de discussão
Learning analytics
Mineração de texto
Computação evolucionária
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The growth of distance learning in Brazil has contributed to democratizing the access to education, especially in higher education. Despite of that, physical distance can cause students a feeling of isolation, which in turn consists of one of the variables that can influence the learner to evade. To avoid such a problem, Virtual Learning Environments often encompass collaborative resources like discussion forums. The literature points that forums are highly collaborative resources because they provide a platform where the participants can debate to enrich their knowledge construction experience. However, the forums collaborative potential has not been fully exploited because most of the messages published in the discussions are from students to the instructor. Thus, it is necessary to provide methods capable of helping students to develop the ability to collaborate. For this, the instructors need to follow up the whole progress of the discussion, and this could be an enormous work as the number of posts increases. It is important to emphasize that the establishment of collaborative discussion in the forums decrease the students‘ sense of isolation, which promote the development of skills such as critical/reflective thinking. This dissertation presents an approach based on Text Mining, Machine Learning, and Evolutionary Computing, to automatically extract Learning Analytics related to collaboration in forums messages conducted in Portuguese. The proposed approach was based on a collaborative identification model, proposed by MURPHY (2004), of which five collaborative features were explored: soliciting feedback; Answer questions; Praise/Express appreciation by the other participants; Share information and resources and; Recognize the presence of the group. To evaluate the performance of the approach were conducted experiments in four databases, composed of messages from educational forums. The proposed method reached F-measure of up to 0.98. In order to measure the impacts of pedagogical mediation and the collaboration of students, a quasi-experiment was carried out in a real educational environment. The results showed that the approach provided the collaborative scenario of the forum for the mediator, enabling a formative evaluation, besides contributing to the increase of the students’ collaboration rates.
publishDate 2018
dc.date.issued.fl_str_mv 2018-02-26
dc.date.accessioned.fl_str_mv 2019-02-26T13:18:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERREIRA, Máverick André Dionísio. Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais. 2018. 79 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7864
identifier_str_mv FERREIRA, Máverick André Dionísio. Uma abordagem para extração automática de learning analytics relacionadas à colaboração em fóruns educacionais. 2018. 79 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7864
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -8268485641417162699
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -6774555140396120501
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática Aplicada
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Estatística e Informática
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7864/2/Maverick+Andre+Dionisio+Ferreira.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/7864/1/license.txt
bitstream.checksum.fl_str_mv 124f8c08d0a72c9101e0681e87100dac
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102255871852544