Quantum enhancements for machine learning based on a probabilistic quantum memory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8538 |
Resumo: | Quantum machine learning arises from the interaction of fields of machine learning and quantum computing. Machine learning is a branch of artificial intelligence relevant in many areas. It provides computers the ability to learn autonomously from experience. Quantum computing, on the other hand, is a different computational paradigm. The processing of information and communication in a quantum computer makes use of the principles and properties of quantum mechanics. With this, it is possible to achieve computational effects that cannot be efficiently reached classically. Quantum computing raises new possibilities through promising approaches that make use of these effects. In fact, proposed quantum algorithms demonstrate their potential in outperforming classical algorithms in some tasks. The present work aims to contribute with the field of quantum machine learning. In order to do so, the use and applications of a quantum probabilistic memory as a tool to propose improved machine learning algorithms is investigated. Here, the quantum memory is used to develop improved procedures for tasks such as cross-validation, and the selection and evaluation of artificial neural network architectures. In addition, a weightless neural network model using the probabilistic quantum memory was evaluated and improved. |
id |
URPE_ab902e58a88b9fddb90724a433f183da |
---|---|
oai_identifier_str |
oai:tede2:tede2/8538 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
SILVA, Adenilton José daFERREIRA, Tiago Alessandro EspinolaPAULA NETO, Fernando Maciano dehttp://lattes.cnpq.br/2800100503239436SANTOS, Priscila Gabriele Marques dos2021-07-09T20:54:32Z2019-02-28SANTOS, Priscila Gabriele Marques dos. Quantum enhancements for machine learning based on a probabilistic quantum memory. 2019. 55 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8538Quantum machine learning arises from the interaction of fields of machine learning and quantum computing. Machine learning is a branch of artificial intelligence relevant in many areas. It provides computers the ability to learn autonomously from experience. Quantum computing, on the other hand, is a different computational paradigm. The processing of information and communication in a quantum computer makes use of the principles and properties of quantum mechanics. With this, it is possible to achieve computational effects that cannot be efficiently reached classically. Quantum computing raises new possibilities through promising approaches that make use of these effects. In fact, proposed quantum algorithms demonstrate their potential in outperforming classical algorithms in some tasks. The present work aims to contribute with the field of quantum machine learning. In order to do so, the use and applications of a quantum probabilistic memory as a tool to propose improved machine learning algorithms is investigated. Here, the quantum memory is used to develop improved procedures for tasks such as cross-validation, and the selection and evaluation of artificial neural network architectures. In addition, a weightless neural network model using the probabilistic quantum memory was evaluated and improved.A aprendizagem de máquina quântica surge a partir da interação das áreas de aprendizagem de máquina e computação quântica. Aprendizagem de máquina é um ramo da inteligência artificial de impacto em diversas áreas que provê aos computadores a habilidade de aprender de maneira autônoma a partir de experiências. A computação quântica, por outro lado, é um diferente paradigma computacional. O processamento de informação e comunicação em um computador quântico faz uso de princípios e propriedades da mecânica quântica, obtendo efeitos computacionais que não podem ser realizados eficientemente em computadores clássicos. A computação quântica levanta novas possibilidades a partir de abordagens promissoras que fazem uso desses efeitos. De fato, propostas de algoritmos quânticos demonstram seu potencial em superar a eficiência dos algoritmos clássicos em algumas tarefas. O presente trabalho busca contribuir com o campo de aprendizagem de máquina quântica. Para tanto, foi investigado o uso e as aplicações de uma memória probabilística quântica como ferramenta para propor algoritmos de aprendizagem de máquina melhorados. Aqui, a memória quântica foi utilizada para desenvolver procedimentos melhorados para as tarefas de validação cruzada, seleção e avaliação de arquiteturas de redes neurais artificiais. Além disso, um modelo de rede neural sem peso que utiliza a memória quântica foi avaliado e melhorado.Submitted by Mario BC (mario@bc.ufrpe.br) on 2021-07-09T20:54:31Z No. of bitstreams: 1 Priscila Gabriele Marques dos Santos.pdf: 690095 bytes, checksum: be6ab358832f0ebaa7c3766adc9616db (MD5)Made available in DSpace on 2021-07-09T20:54:32Z (GMT). No. of bitstreams: 1 Priscila Gabriele Marques dos Santos.pdf: 690095 bytes, checksum: be6ab358832f0ebaa7c3766adc9616db (MD5) Previous issue date: 2019-02-28application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Informática AplicadaUFRPEBrasilDepartamento de Estatística e InformáticaComputação quânticaMemória quânticaAprendizagem de máquinaCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOQuantum enhancements for machine learning based on a probabilistic quantum memoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-8268485641417162699600600600-67745551403961205013671711205811204509info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALPriscila Gabriele Marques dos Santos.pdfPriscila Gabriele Marques dos Santos.pdfapplication/pdf690095http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8538/2/Priscila+Gabriele+Marques+dos+Santos.pdfbe6ab358832f0ebaa7c3766adc9616dbMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8538/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/85382021-07-09 17:54:32.115oai:tede2:tede2/8538Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:37:07.746098Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
title |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
spellingShingle |
Quantum enhancements for machine learning based on a probabilistic quantum memory SANTOS, Priscila Gabriele Marques dos Computação quântica Memória quântica Aprendizagem de máquina CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
title_full |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
title_fullStr |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
title_full_unstemmed |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
title_sort |
Quantum enhancements for machine learning based on a probabilistic quantum memory |
author |
SANTOS, Priscila Gabriele Marques dos |
author_facet |
SANTOS, Priscila Gabriele Marques dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SILVA, Adenilton José da |
dc.contributor.referee1.fl_str_mv |
FERREIRA, Tiago Alessandro Espinola |
dc.contributor.referee2.fl_str_mv |
PAULA NETO, Fernando Maciano de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2800100503239436 |
dc.contributor.author.fl_str_mv |
SANTOS, Priscila Gabriele Marques dos |
contributor_str_mv |
SILVA, Adenilton José da FERREIRA, Tiago Alessandro Espinola PAULA NETO, Fernando Maciano de |
dc.subject.por.fl_str_mv |
Computação quântica Memória quântica Aprendizagem de máquina |
topic |
Computação quântica Memória quântica Aprendizagem de máquina CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Quantum machine learning arises from the interaction of fields of machine learning and quantum computing. Machine learning is a branch of artificial intelligence relevant in many areas. It provides computers the ability to learn autonomously from experience. Quantum computing, on the other hand, is a different computational paradigm. The processing of information and communication in a quantum computer makes use of the principles and properties of quantum mechanics. With this, it is possible to achieve computational effects that cannot be efficiently reached classically. Quantum computing raises new possibilities through promising approaches that make use of these effects. In fact, proposed quantum algorithms demonstrate their potential in outperforming classical algorithms in some tasks. The present work aims to contribute with the field of quantum machine learning. In order to do so, the use and applications of a quantum probabilistic memory as a tool to propose improved machine learning algorithms is investigated. Here, the quantum memory is used to develop improved procedures for tasks such as cross-validation, and the selection and evaluation of artificial neural network architectures. In addition, a weightless neural network model using the probabilistic quantum memory was evaluated and improved. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-02-28 |
dc.date.accessioned.fl_str_mv |
2021-07-09T20:54:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Priscila Gabriele Marques dos. Quantum enhancements for machine learning based on a probabilistic quantum memory. 2019. 55 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8538 |
identifier_str_mv |
SANTOS, Priscila Gabriele Marques dos. Quantum enhancements for machine learning based on a probabilistic quantum memory. 2019. 55 f. Dissertação (Programa de Pós-Graduação em Informática Aplicada) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/8538 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-8268485641417162699 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-6774555140396120501 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática Aplicada |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Estatística e Informática |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8538/2/Priscila+Gabriele+Marques+dos+Santos.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/8538/1/license.txt |
bitstream.checksum.fl_str_mv |
be6ab358832f0ebaa7c3766adc9616db bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102264608587776 |