Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRPE |
Texto Completo: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082 |
Resumo: | The monitoring of the phenology of the sugarcane crop is of great importance, since the globalized market requires reliable information on the amount of raw material for the production of sugar and alcohol. The present study aimed to estimate the phenological parameters of sugarcane (beginning, middle and end of the cycle) between the 2001 and 2020 crops, using time series of MODIS images, obtained from Google Earth Engine and TIMESAT software. The study was carried out in sugarcane growing areas located in the municipality of Juazeiro, BA. The meteorological data were obtained from the virtual pages of the Meteorology Laboratory of the Federal University of São Francisco Valley and CHIRPS, while the Terra/MODIS, Landsat-5 and MapBiomas satellite images from the Google Earth Engine catalog. Precipitation data were evaluated as a function of precipitation from the CHIRPS product, obtaining a "very high" correlation (R² = 0,734); moreover, CHIRPS precipitation was related to NDVI, even in irrigated sugarcane fields, and could influence harvest dates. Furthermore, the time series of vegetation indices (NDVI, SAVI and IAF) were used to evaluate the spatial and temporal evolution of the test area in each phenological cycle. In general, the sugarcane harvest dates estimated with the time series of the MODIS NDVI sensor in the TIMESAT software compared with the actual harvest data, between the 2006 and 2012 harvests, showed an average difference of 10 days, with a performance index equal to 0,99 and a correlation coefficient of 0,99, significant at the 5% confidence level. It is concluded that the TIMESAT software was able to estimate the phenological parameters in sugarcane production areas, using MODIS images processed in Google Earth Engine during the evaluated time period (2001 to 2020). |
id |
URPE_ccc408d06648ece40b7c1035b3c53993 |
---|---|
oai_identifier_str |
oai:tede2:tede2/9082 |
network_acronym_str |
URPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
repository_id_str |
|
spelling |
LOPES, Pabrício Marcos OliveiraRIBEIRO, Eberson PessoaNASCIMENTO, Cristina Rodrigueshttp://lattes.cnpq.br/7199123096855728MANRIQUE, Diego Rosyur Castro2023-06-15T20:01:10Z2022-02-16MANRIQUE, Diego Rosyur Castro. Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco. 2022. 73 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082The monitoring of the phenology of the sugarcane crop is of great importance, since the globalized market requires reliable information on the amount of raw material for the production of sugar and alcohol. The present study aimed to estimate the phenological parameters of sugarcane (beginning, middle and end of the cycle) between the 2001 and 2020 crops, using time series of MODIS images, obtained from Google Earth Engine and TIMESAT software. The study was carried out in sugarcane growing areas located in the municipality of Juazeiro, BA. The meteorological data were obtained from the virtual pages of the Meteorology Laboratory of the Federal University of São Francisco Valley and CHIRPS, while the Terra/MODIS, Landsat-5 and MapBiomas satellite images from the Google Earth Engine catalog. Precipitation data were evaluated as a function of precipitation from the CHIRPS product, obtaining a "very high" correlation (R² = 0,734); moreover, CHIRPS precipitation was related to NDVI, even in irrigated sugarcane fields, and could influence harvest dates. Furthermore, the time series of vegetation indices (NDVI, SAVI and IAF) were used to evaluate the spatial and temporal evolution of the test area in each phenological cycle. In general, the sugarcane harvest dates estimated with the time series of the MODIS NDVI sensor in the TIMESAT software compared with the actual harvest data, between the 2006 and 2012 harvests, showed an average difference of 10 days, with a performance index equal to 0,99 and a correlation coefficient of 0,99, significant at the 5% confidence level. It is concluded that the TIMESAT software was able to estimate the phenological parameters in sugarcane production areas, using MODIS images processed in Google Earth Engine during the evaluated time period (2001 to 2020).O monitoramento da fenologia da cultura da cana-de-açúcar é de grande importância, uma vez que o mercado globalizado exige informações confiáveis sobre a quantidade de matéria-prima para a produção de açúcar e álcool. O presente estudo objetivou estimar os parâmetros fenológicos da cana-de-açúcar (início, meio e final do ciclo) entre as safras de 2001 e 2020, utilizando série temporal de imagens MODIS, obtidas do Google Earth Engine e do software TIMESAT. O estudo foi realizado nas áreas de cultivo de cana-de-açúcar localizado no município de Juazeiro, BA. Os dados meteorológicos foram obtidos nas páginas virtuais do Laboratório de Meteorologia da Universidade Federal do Vale do São Francisco e do CHIRPS, enquanto as imagens dos satélites Terra/MODIS, Landsat-5 e MapBiomas do catálogo do Google Earth Engine. Os dados de precipitação foram avaliados em função da precipitação do produto CHIRPS, obtendo uma correlação “muito alta” (R² = 0,734); além disso, a precipitação do CHIRPS teve relação com o NDVI, mesmo em canaviais irrigados, podendo influenciar nas datas da colheita. Ademais, as séries temporais dos índices de vegetação (NDVI, SAVI e IAF) foram usadas para avaliar a evolução espacial e temporal da área teste em cada ciclo fenológico. De modo geral, as datas das colheitas de cana-de-açúcar estimadas com a série temporal do sensor MODIS NDVI no software TIMESAT comparadas com os dados de colheitas reais, entre as safras de 2006 a 2012, apresentaram uma diferença média de 10 dias, com índice de desempenho igual a 0,99 e de coeficiente de correlação de 0,99, significativo ao nível de confiança de 5%. Conclui-se que o software TIMESAT foi capaz de estimar os parâmetros fenológicos em áreas de produção de cana-de-açúcar, utilizando imagens MODIS processadas no Google Earth Engine durante o período de tempo avaliado (2001 a 2020).Submitted by (ana.araujo@ufrpe.br) on 2023-06-15T20:01:10Z No. of bitstreams: 1 Diego Rosyur Castro Manrique.pdf: 2708716 bytes, checksum: a15af8eb926b64ddb8cf3c8bee020a3e (MD5)Made available in DSpace on 2023-06-15T20:01:10Z (GMT). No. of bitstreams: 1 Diego Rosyur Castro Manrique.pdf: 2708716 bytes, checksum: a15af8eb926b64ddb8cf3c8bee020a3e (MD5) Previous issue date: 2022-02-16application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Engenharia AgrícolaUFRPEBrasilDepartamento de Engenharia AgrícolaCana-de-açúcarFenologiaMonitoramentoÍndice de vegetaçãoSensor MODISSérie temporalCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAMonitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São FranciscoPhenological monitoring of sugarcane fields using Google Earth Engine and TIMESAT in the São Francisco Sub-medium Valleyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600-28621161963550796749185445721588761555info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALDiego Rosyur Castro Manrique.pdfDiego Rosyur Castro Manrique.pdfapplication/pdf2708716http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/2/Diego+Rosyur+Castro+Manrique.pdfa15af8eb926b64ddb8cf3c8bee020a3eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/90822023-06-15 17:01:10.559oai:tede2:tede2/9082Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:37:48.562559Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false |
dc.title.por.fl_str_mv |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
dc.title.alternative.eng.fl_str_mv |
Phenological monitoring of sugarcane fields using Google Earth Engine and TIMESAT in the São Francisco Sub-medium Valley |
title |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
spellingShingle |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco MANRIQUE, Diego Rosyur Castro Cana-de-açúcar Fenologia Monitoramento Índice de vegetação Sensor MODIS Série temporal CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
title_full |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
title_fullStr |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
title_full_unstemmed |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
title_sort |
Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco |
author |
MANRIQUE, Diego Rosyur Castro |
author_facet |
MANRIQUE, Diego Rosyur Castro |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
LOPES, Pabrício Marcos Oliveira |
dc.contributor.referee1.fl_str_mv |
RIBEIRO, Eberson Pessoa |
dc.contributor.referee2.fl_str_mv |
NASCIMENTO, Cristina Rodrigues |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7199123096855728 |
dc.contributor.author.fl_str_mv |
MANRIQUE, Diego Rosyur Castro |
contributor_str_mv |
LOPES, Pabrício Marcos Oliveira RIBEIRO, Eberson Pessoa NASCIMENTO, Cristina Rodrigues |
dc.subject.por.fl_str_mv |
Cana-de-açúcar Fenologia Monitoramento Índice de vegetação Sensor MODIS Série temporal |
topic |
Cana-de-açúcar Fenologia Monitoramento Índice de vegetação Sensor MODIS Série temporal CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
The monitoring of the phenology of the sugarcane crop is of great importance, since the globalized market requires reliable information on the amount of raw material for the production of sugar and alcohol. The present study aimed to estimate the phenological parameters of sugarcane (beginning, middle and end of the cycle) between the 2001 and 2020 crops, using time series of MODIS images, obtained from Google Earth Engine and TIMESAT software. The study was carried out in sugarcane growing areas located in the municipality of Juazeiro, BA. The meteorological data were obtained from the virtual pages of the Meteorology Laboratory of the Federal University of São Francisco Valley and CHIRPS, while the Terra/MODIS, Landsat-5 and MapBiomas satellite images from the Google Earth Engine catalog. Precipitation data were evaluated as a function of precipitation from the CHIRPS product, obtaining a "very high" correlation (R² = 0,734); moreover, CHIRPS precipitation was related to NDVI, even in irrigated sugarcane fields, and could influence harvest dates. Furthermore, the time series of vegetation indices (NDVI, SAVI and IAF) were used to evaluate the spatial and temporal evolution of the test area in each phenological cycle. In general, the sugarcane harvest dates estimated with the time series of the MODIS NDVI sensor in the TIMESAT software compared with the actual harvest data, between the 2006 and 2012 harvests, showed an average difference of 10 days, with a performance index equal to 0,99 and a correlation coefficient of 0,99, significant at the 5% confidence level. It is concluded that the TIMESAT software was able to estimate the phenological parameters in sugarcane production areas, using MODIS images processed in Google Earth Engine during the evaluated time period (2001 to 2020). |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-02-16 |
dc.date.accessioned.fl_str_mv |
2023-06-15T20:01:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MANRIQUE, Diego Rosyur Castro. Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco. 2022. 73 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Federal Rural de Pernambuco, Recife. |
dc.identifier.uri.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082 |
identifier_str_mv |
MANRIQUE, Diego Rosyur Castro. Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco. 2022. 73 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Federal Rural de Pernambuco, Recife. |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5347692450416052129 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-2862116196355079674 |
dc.relation.cnpq.fl_str_mv |
9185445721588761555 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Agrícola |
dc.publisher.initials.fl_str_mv |
UFRPE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Departamento de Engenharia Agrícola |
publisher.none.fl_str_mv |
Universidade Federal Rural de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco (UFRPE) instacron:UFRPE |
instname_str |
Universidade Federal Rural de Pernambuco (UFRPE) |
instacron_str |
UFRPE |
institution |
UFRPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRPE |
collection |
Biblioteca Digital de Teses e Dissertações da UFRPE |
bitstream.url.fl_str_mv |
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/2/Diego+Rosyur+Castro+Manrique.pdf http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/1/license.txt |
bitstream.checksum.fl_str_mv |
a15af8eb926b64ddb8cf3c8bee020a3e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE) |
repository.mail.fl_str_mv |
bdtd@ufrpe.br ||bdtd@ufrpe.br |
_version_ |
1810102271530237952 |