Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco

Detalhes bibliográficos
Autor(a) principal: MANRIQUE, Diego Rosyur Castro
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRPE
Texto Completo: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082
Resumo: The monitoring of the phenology of the sugarcane crop is of great importance, since the globalized market requires reliable information on the amount of raw material for the production of sugar and alcohol. The present study aimed to estimate the phenological parameters of sugarcane (beginning, middle and end of the cycle) between the 2001 and 2020 crops, using time series of MODIS images, obtained from Google Earth Engine and TIMESAT software. The study was carried out in sugarcane growing areas located in the municipality of Juazeiro, BA. The meteorological data were obtained from the virtual pages of the Meteorology Laboratory of the Federal University of São Francisco Valley and CHIRPS, while the Terra/MODIS, Landsat-5 and MapBiomas satellite images from the Google Earth Engine catalog. Precipitation data were evaluated as a function of precipitation from the CHIRPS product, obtaining a "very high" correlation (R² = 0,734); moreover, CHIRPS precipitation was related to NDVI, even in irrigated sugarcane fields, and could influence harvest dates. Furthermore, the time series of vegetation indices (NDVI, SAVI and IAF) were used to evaluate the spatial and temporal evolution of the test area in each phenological cycle. In general, the sugarcane harvest dates estimated with the time series of the MODIS NDVI sensor in the TIMESAT software compared with the actual harvest data, between the 2006 and 2012 harvests, showed an average difference of 10 days, with a performance index equal to 0,99 and a correlation coefficient of 0,99, significant at the 5% confidence level. It is concluded that the TIMESAT software was able to estimate the phenological parameters in sugarcane production areas, using MODIS images processed in Google Earth Engine during the evaluated time period (2001 to 2020).
id URPE_ccc408d06648ece40b7c1035b3c53993
oai_identifier_str oai:tede2:tede2/9082
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling LOPES, Pabrício Marcos OliveiraRIBEIRO, Eberson PessoaNASCIMENTO, Cristina Rodrigueshttp://lattes.cnpq.br/7199123096855728MANRIQUE, Diego Rosyur Castro2023-06-15T20:01:10Z2022-02-16MANRIQUE, Diego Rosyur Castro. Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco. 2022. 73 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082The monitoring of the phenology of the sugarcane crop is of great importance, since the globalized market requires reliable information on the amount of raw material for the production of sugar and alcohol. The present study aimed to estimate the phenological parameters of sugarcane (beginning, middle and end of the cycle) between the 2001 and 2020 crops, using time series of MODIS images, obtained from Google Earth Engine and TIMESAT software. The study was carried out in sugarcane growing areas located in the municipality of Juazeiro, BA. The meteorological data were obtained from the virtual pages of the Meteorology Laboratory of the Federal University of São Francisco Valley and CHIRPS, while the Terra/MODIS, Landsat-5 and MapBiomas satellite images from the Google Earth Engine catalog. Precipitation data were evaluated as a function of precipitation from the CHIRPS product, obtaining a "very high" correlation (R² = 0,734); moreover, CHIRPS precipitation was related to NDVI, even in irrigated sugarcane fields, and could influence harvest dates. Furthermore, the time series of vegetation indices (NDVI, SAVI and IAF) were used to evaluate the spatial and temporal evolution of the test area in each phenological cycle. In general, the sugarcane harvest dates estimated with the time series of the MODIS NDVI sensor in the TIMESAT software compared with the actual harvest data, between the 2006 and 2012 harvests, showed an average difference of 10 days, with a performance index equal to 0,99 and a correlation coefficient of 0,99, significant at the 5% confidence level. It is concluded that the TIMESAT software was able to estimate the phenological parameters in sugarcane production areas, using MODIS images processed in Google Earth Engine during the evaluated time period (2001 to 2020).O monitoramento da fenologia da cultura da cana-de-açúcar é de grande importância, uma vez que o mercado globalizado exige informações confiáveis sobre a quantidade de matéria-prima para a produção de açúcar e álcool. O presente estudo objetivou estimar os parâmetros fenológicos da cana-de-açúcar (início, meio e final do ciclo) entre as safras de 2001 e 2020, utilizando série temporal de imagens MODIS, obtidas do Google Earth Engine e do software TIMESAT. O estudo foi realizado nas áreas de cultivo de cana-de-açúcar localizado no município de Juazeiro, BA. Os dados meteorológicos foram obtidos nas páginas virtuais do Laboratório de Meteorologia da Universidade Federal do Vale do São Francisco e do CHIRPS, enquanto as imagens dos satélites Terra/MODIS, Landsat-5 e MapBiomas do catálogo do Google Earth Engine. Os dados de precipitação foram avaliados em função da precipitação do produto CHIRPS, obtendo uma correlação “muito alta” (R² = 0,734); além disso, a precipitação do CHIRPS teve relação com o NDVI, mesmo em canaviais irrigados, podendo influenciar nas datas da colheita. Ademais, as séries temporais dos índices de vegetação (NDVI, SAVI e IAF) foram usadas para avaliar a evolução espacial e temporal da área teste em cada ciclo fenológico. De modo geral, as datas das colheitas de cana-de-açúcar estimadas com a série temporal do sensor MODIS NDVI no software TIMESAT comparadas com os dados de colheitas reais, entre as safras de 2006 a 2012, apresentaram uma diferença média de 10 dias, com índice de desempenho igual a 0,99 e de coeficiente de correlação de 0,99, significativo ao nível de confiança de 5%. Conclui-se que o software TIMESAT foi capaz de estimar os parâmetros fenológicos em áreas de produção de cana-de-açúcar, utilizando imagens MODIS processadas no Google Earth Engine durante o período de tempo avaliado (2001 a 2020).Submitted by (ana.araujo@ufrpe.br) on 2023-06-15T20:01:10Z No. of bitstreams: 1 Diego Rosyur Castro Manrique.pdf: 2708716 bytes, checksum: a15af8eb926b64ddb8cf3c8bee020a3e (MD5)Made available in DSpace on 2023-06-15T20:01:10Z (GMT). No. of bitstreams: 1 Diego Rosyur Castro Manrique.pdf: 2708716 bytes, checksum: a15af8eb926b64ddb8cf3c8bee020a3e (MD5) Previous issue date: 2022-02-16application/pdfporUniversidade Federal Rural de PernambucoPrograma de Pós-Graduação em Engenharia AgrícolaUFRPEBrasilDepartamento de Engenharia AgrícolaCana-de-açúcarFenologiaMonitoramentoÍndice de vegetaçãoSensor MODISSérie temporalCIENCIAS AGRARIAS::ENGENHARIA AGRICOLAMonitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São FranciscoPhenological monitoring of sugarcane fields using Google Earth Engine and TIMESAT in the São Francisco Sub-medium Valleyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5347692450416052129600600600-28621161963550796749185445721588761555info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPEORIGINALDiego Rosyur Castro Manrique.pdfDiego Rosyur Castro Manrique.pdfapplication/pdf2708716http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/2/Diego+Rosyur+Castro+Manrique.pdfa15af8eb926b64ddb8cf3c8bee020a3eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede2/90822023-06-15 17:01:10.559oai:tede2:tede2/9082Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2024-05-28T12:37:48.562559Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.por.fl_str_mv Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
dc.title.alternative.eng.fl_str_mv Phenological monitoring of sugarcane fields using Google Earth Engine and TIMESAT in the São Francisco Sub-medium Valley
title Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
spellingShingle Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
MANRIQUE, Diego Rosyur Castro
Cana-de-açúcar
Fenologia
Monitoramento
Índice de vegetação
Sensor MODIS
Série temporal
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
title_full Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
title_fullStr Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
title_full_unstemmed Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
title_sort Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco
author MANRIQUE, Diego Rosyur Castro
author_facet MANRIQUE, Diego Rosyur Castro
author_role author
dc.contributor.advisor1.fl_str_mv LOPES, Pabrício Marcos Oliveira
dc.contributor.referee1.fl_str_mv RIBEIRO, Eberson Pessoa
dc.contributor.referee2.fl_str_mv NASCIMENTO, Cristina Rodrigues
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7199123096855728
dc.contributor.author.fl_str_mv MANRIQUE, Diego Rosyur Castro
contributor_str_mv LOPES, Pabrício Marcos Oliveira
RIBEIRO, Eberson Pessoa
NASCIMENTO, Cristina Rodrigues
dc.subject.por.fl_str_mv Cana-de-açúcar
Fenologia
Monitoramento
Índice de vegetação
Sensor MODIS
Série temporal
topic Cana-de-açúcar
Fenologia
Monitoramento
Índice de vegetação
Sensor MODIS
Série temporal
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.cnpq.fl_str_mv CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The monitoring of the phenology of the sugarcane crop is of great importance, since the globalized market requires reliable information on the amount of raw material for the production of sugar and alcohol. The present study aimed to estimate the phenological parameters of sugarcane (beginning, middle and end of the cycle) between the 2001 and 2020 crops, using time series of MODIS images, obtained from Google Earth Engine and TIMESAT software. The study was carried out in sugarcane growing areas located in the municipality of Juazeiro, BA. The meteorological data were obtained from the virtual pages of the Meteorology Laboratory of the Federal University of São Francisco Valley and CHIRPS, while the Terra/MODIS, Landsat-5 and MapBiomas satellite images from the Google Earth Engine catalog. Precipitation data were evaluated as a function of precipitation from the CHIRPS product, obtaining a "very high" correlation (R² = 0,734); moreover, CHIRPS precipitation was related to NDVI, even in irrigated sugarcane fields, and could influence harvest dates. Furthermore, the time series of vegetation indices (NDVI, SAVI and IAF) were used to evaluate the spatial and temporal evolution of the test area in each phenological cycle. In general, the sugarcane harvest dates estimated with the time series of the MODIS NDVI sensor in the TIMESAT software compared with the actual harvest data, between the 2006 and 2012 harvests, showed an average difference of 10 days, with a performance index equal to 0,99 and a correlation coefficient of 0,99, significant at the 5% confidence level. It is concluded that the TIMESAT software was able to estimate the phenological parameters in sugarcane production areas, using MODIS images processed in Google Earth Engine during the evaluated time period (2001 to 2020).
publishDate 2022
dc.date.issued.fl_str_mv 2022-02-16
dc.date.accessioned.fl_str_mv 2023-06-15T20:01:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MANRIQUE, Diego Rosyur Castro. Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco. 2022. 73 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Federal Rural de Pernambuco, Recife.
dc.identifier.uri.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082
identifier_str_mv MANRIQUE, Diego Rosyur Castro. Monitoramento fenológico de canaviais usando o Google Earth Engine e TIMESAT no Vale do Submédio do São Francisco. 2022. 73 f. Dissertação (Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/9082
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -2862116196355079674
dc.relation.cnpq.fl_str_mv 9185445721588761555
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UFRPE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Departamento de Engenharia Agrícola
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
bitstream.url.fl_str_mv http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/2/Diego+Rosyur+Castro+Manrique.pdf
http://www.tede2.ufrpe.br:8080/tede2/bitstream/tede2/9082/1/license.txt
bitstream.checksum.fl_str_mv a15af8eb926b64ddb8cf3c8bee020a3e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1810102271530237952