On filter order in fir adaptive filters.

Detalhes bibliográficos
Autor(a) principal: Aoyagi, Thiago Yuji
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/
Resumo: A practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter length affects the performance of adaptive algorithms, in particular, for the LMS and the -NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state performance, and propose a method for selecting the filter length that ensures fast con vergence rate and low undermodeling effects, assuming that the system impulse response follows an exponential decay envelope. We show that a filter with the proposed length is particularly interesting to operate as the fast filter within a combination of filters. For nonstationary scenarios, we focus our study on the steady-state performance, and show through simulations that a short filter may outperform a longer one in both convergence and tracking performance.
id USP_068aac983a194b4c54a4aac1daab5fd9
oai_identifier_str oai:teses.usp.br:tde-15022022-095446
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling On filter order in fir adaptive filters.Sobre a ordem de filtro em filtros adaptativo FIR.Adaptive filteringCombination of filterFilter lengthFilter length selectionProcessamento de sinais adaptativosProcessamento digital de sinaisUndermodelingA practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter length affects the performance of adaptive algorithms, in particular, for the LMS and the -NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state performance, and propose a method for selecting the filter length that ensures fast con vergence rate and low undermodeling effects, assuming that the system impulse response follows an exponential decay envelope. We show that a filter with the proposed length is particularly interesting to operate as the fast filter within a combination of filters. For nonstationary scenarios, we focus our study on the steady-state performance, and show through simulations that a short filter may outperform a longer one in both convergence and tracking performance.Um problema encontrado na prática ao projetar um filtro adaptativo FIR (do inglês, finite impulse response) é escolher um comprimento adequado para o filtro. O comprimento ideal para o filtro depende da aplicação, por isso é comum determiná-lo por métodos simples e práticos, como por tentativa e erro. Com um número pequeno de coeficientes, o filtro tem menor complexidade e pode se beneficiar de uma maior taxa de convergência, mas seu desempenho em regime é afetado por submodelamento. Por outro lado, com muitos coeficientes, asseguramos um baixo ou inexistente efeito de submodelamento, ao custo de limitar a máxima taxa de convergência estável do filtro, aumentar a complexidade computacional e também reduzir a capacidade do filtro em acompanhar variações no tempo. Neste trabalho, analisamos como o comprimento do filtro afeta o desempenho de algoritmos adaptativos, em particular dos algoritmos LMS e -NLMS. Para ambientes estacionários, analisamos o desempenho tanto em transiente quanto em regime, e propomos um projeto para o comprimento do filtro que garante alta convergência e baixo submodelamento, assumindo que a resposta impulsiva do meio segue uma envoltória de decaimento exponencial. Mostramos como um filtro com o comprimento proposto ´e particularmente interessante para ser usado em uma combinação de filtros, operando como o filtro rápido. Para ambientes não-estacionários, focamos no estudo do desempenho em regime, e mostramos com simulações que um filtro curto pode superar o desempenho de um filtro mais longo tanto em convergência quanto ao rastrear as variações temporais do sistema.Biblioteca Digitais de Teses e Dissertações da USPLopes, Cássio GuimarãesNascimento, Vitor HeloizAoyagi, Thiago Yuji2021-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-02-21T14:04:02Zoai:teses.usp.br:tde-15022022-095446Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-02-21T14:04:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv On filter order in fir adaptive filters.
Sobre a ordem de filtro em filtros adaptativo FIR.
title On filter order in fir adaptive filters.
spellingShingle On filter order in fir adaptive filters.
Aoyagi, Thiago Yuji
Adaptive filtering
Combination of filter
Filter length
Filter length selection
Processamento de sinais adaptativos
Processamento digital de sinais
Undermodeling
title_short On filter order in fir adaptive filters.
title_full On filter order in fir adaptive filters.
title_fullStr On filter order in fir adaptive filters.
title_full_unstemmed On filter order in fir adaptive filters.
title_sort On filter order in fir adaptive filters.
author Aoyagi, Thiago Yuji
author_facet Aoyagi, Thiago Yuji
author_role author
dc.contributor.none.fl_str_mv Lopes, Cássio Guimarães
Nascimento, Vitor Heloiz
dc.contributor.author.fl_str_mv Aoyagi, Thiago Yuji
dc.subject.por.fl_str_mv Adaptive filtering
Combination of filter
Filter length
Filter length selection
Processamento de sinais adaptativos
Processamento digital de sinais
Undermodeling
topic Adaptive filtering
Combination of filter
Filter length
Filter length selection
Processamento de sinais adaptativos
Processamento digital de sinais
Undermodeling
description A practical problem faced when designing an FIR (Finite Impulse Response) adaptive filter is to set an appropriate filter length. The best choice for the length is application dependent, and is common practice to determine it by some rough approximation, such as by trial-and-error. By setting a small number of coefficients, the filter has a reduced complexity and may benefit from an increased convergence rate, but its steady-state per formance is degraded by undermodeling. By setting a large number of coefficients, we ensure the filter suffers negligible or no undermodeling effects, but we limit the maximum stable convergence rate, increase the computational complexity and also decrease the fil ter ability to respond in nonstationary scenarios. In this work, we analyze how the filter length affects the performance of adaptive algorithms, in particular, for the LMS and the -NLMS algorithms. For stationary scenarios, we analyze both transient and steady-state performance, and propose a method for selecting the filter length that ensures fast con vergence rate and low undermodeling effects, assuming that the system impulse response follows an exponential decay envelope. We show that a filter with the proposed length is particularly interesting to operate as the fast filter within a combination of filters. For nonstationary scenarios, we focus our study on the steady-state performance, and show through simulations that a short filter may outperform a longer one in both convergence and tracking performance.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/
url https://www.teses.usp.br/teses/disponiveis/3/3142/tde-15022022-095446/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256984438439936