O Número de Nielsen Relativo

Detalhes bibliográficos
Autor(a) principal: Aniz, Claudemir
Data de Publicação: 1998
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-14032018-091102/
Resumo: O objetivo deste trabalho é introduzir o número de Nielsen relativo N(f; X, A), para aplicações f : (X, A) → (X, A) entre pares de espaços, com propriedades semelhantes aos do número de Nielsen, como invariância homotópica e invariância por tipo de homotopia. De N(f; X, A) ≥ N(f) = N (f; X, 0), o número de Nielsen relativo é no caso A ≠ 0 um limitante inferior melhor do que N(f)) para o número mínimo μ(f; X, A) de pontos fixos na classe de homotopia de f, onde as homotopias são aplicações da forma H: (X x I, A x I) → (X, A). Condições para um par (X, A) de poliedros finitos são dadas para assegurar que o número de Nielsen relativo é de fato o melhor limitante inferior, isto e, N(f; X, A) = μ(f; X, A).
id USP_0d3f51da49b4f30aad44c848bb270aff
oai_identifier_str oai:teses.usp.br:tde-14032018-091102
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling O Número de Nielsen RelativoNot availableNão disponívelNot availableO objetivo deste trabalho é introduzir o número de Nielsen relativo N(f; X, A), para aplicações f : (X, A) → (X, A) entre pares de espaços, com propriedades semelhantes aos do número de Nielsen, como invariância homotópica e invariância por tipo de homotopia. De N(f; X, A) ≥ N(f) = N (f; X, 0), o número de Nielsen relativo é no caso A ≠ 0 um limitante inferior melhor do que N(f)) para o número mínimo μ(f; X, A) de pontos fixos na classe de homotopia de f, onde as homotopias são aplicações da forma H: (X x I, A x I) → (X, A). Condições para um par (X, A) de poliedros finitos são dadas para assegurar que o número de Nielsen relativo é de fato o melhor limitante inferior, isto e, N(f; X, A) = μ(f; X, A).The purpose of this work is to introduce the relative Nielsen number N(f; X, A) for maps of pairs of spaces f : (X, A) → (X, A), with similar properties to the usual Nielsen number as homotopy invariance and homotopy type invariance. From N(f;; X, A) ≥ N(f) = N(f;; X, 0), the relative Nielsen number is in the case A ≠ 0 a better lower bound than N(f) for the minimum number μ(f ; X, A) of fixed points in the homotopy class of f, here homotopy means maps of pairs of the form H : (X x I, A x I) → (X, A). In the case (X, A) is a fmite polyhedral pair, conditions are given to guarantee that the relative Nielsen number is in fact the best lower bound, that is, N(f ; X, A) = μ( f ; X, A).Biblioteca Digitais de Teses e Dissertações da USPManzoli Neto, OzirideAniz, Claudemir1998-07-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-14032018-091102/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-14032018-091102Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv O Número de Nielsen Relativo
Not available
title O Número de Nielsen Relativo
spellingShingle O Número de Nielsen Relativo
Aniz, Claudemir
Não disponível
Not available
title_short O Número de Nielsen Relativo
title_full O Número de Nielsen Relativo
title_fullStr O Número de Nielsen Relativo
title_full_unstemmed O Número de Nielsen Relativo
title_sort O Número de Nielsen Relativo
author Aniz, Claudemir
author_facet Aniz, Claudemir
author_role author
dc.contributor.none.fl_str_mv Manzoli Neto, Oziride
dc.contributor.author.fl_str_mv Aniz, Claudemir
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description O objetivo deste trabalho é introduzir o número de Nielsen relativo N(f; X, A), para aplicações f : (X, A) → (X, A) entre pares de espaços, com propriedades semelhantes aos do número de Nielsen, como invariância homotópica e invariância por tipo de homotopia. De N(f; X, A) ≥ N(f) = N (f; X, 0), o número de Nielsen relativo é no caso A ≠ 0 um limitante inferior melhor do que N(f)) para o número mínimo μ(f; X, A) de pontos fixos na classe de homotopia de f, onde as homotopias são aplicações da forma H: (X x I, A x I) → (X, A). Condições para um par (X, A) de poliedros finitos são dadas para assegurar que o número de Nielsen relativo é de fato o melhor limitante inferior, isto e, N(f; X, A) = μ(f; X, A).
publishDate 1998
dc.date.none.fl_str_mv 1998-07-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-14032018-091102/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-14032018-091102/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256959713017856