Raízes de funções de um complexo em uma variedade
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/ |
Resumo: | O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário. |
id |
USP_1ca0fb2374ce8b81417f4aa65f08de30 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10012018-110156 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Raízes de funções de um complexo em uma variedadeNot availableNão disponívelNot availableO objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.The goal of this work is to progress in the roots theory to maps f : K → M between complexes K and closed manifolds M, both with the same dimension r ≥ 3. Two directions are treated. In the first direction, the concept of minimal classes is defined, and we seek conditions under the spaces K and M so that there exists a map in the homotopy class of f , where all the classes are minimals. In the second direction, we are supposing that Hr(K; Z) = 0, we will like to know if it is possible to exist f : K → M such that MR[f, a ≠ 0, where a ∈ M is an arbitrary point.Biblioteca Digitais de Teses e Dissertações da USPGoncalves, Daciberg LimaAniz, Claudemir2002-09-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-10012018-110156Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Raízes de funções de um complexo em uma variedade Not available |
title |
Raízes de funções de um complexo em uma variedade |
spellingShingle |
Raízes de funções de um complexo em uma variedade Aniz, Claudemir Não disponível Not available |
title_short |
Raízes de funções de um complexo em uma variedade |
title_full |
Raízes de funções de um complexo em uma variedade |
title_fullStr |
Raízes de funções de um complexo em uma variedade |
title_full_unstemmed |
Raízes de funções de um complexo em uma variedade |
title_sort |
Raízes de funções de um complexo em uma variedade |
author |
Aniz, Claudemir |
author_facet |
Aniz, Claudemir |
author_role |
author |
dc.contributor.none.fl_str_mv |
Goncalves, Daciberg Lima |
dc.contributor.author.fl_str_mv |
Aniz, Claudemir |
dc.subject.por.fl_str_mv |
Não disponível Not available |
topic |
Não disponível Not available |
description |
O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-09-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256840013873152 |