Raízes de funções de um complexo em uma variedade

Detalhes bibliográficos
Autor(a) principal: Aniz, Claudemir
Data de Publicação: 2002
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/
Resumo: O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.
id USP_1ca0fb2374ce8b81417f4aa65f08de30
oai_identifier_str oai:teses.usp.br:tde-10012018-110156
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Raízes de funções de um complexo em uma variedadeNot availableNão disponívelNot availableO objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.The goal of this work is to progress in the roots theory to maps f : K → M between complexes K and closed manifolds M, both with the same dimension r ≥ 3. Two directions are treated. In the first direction, the concept of minimal classes is defined, and we seek conditions under the spaces K and M so that there exists a map in the homotopy class of f , where all the classes are minimals. In the second direction, we are supposing that Hr(K; Z) = 0, we will like to know if it is possible to exist f : K → M such that MR[f, a ≠ 0, where a ∈ M is an arbitrary point.Biblioteca Digitais de Teses e Dissertações da USPGoncalves, Daciberg LimaAniz, Claudemir2002-09-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-10012018-110156Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Raízes de funções de um complexo em uma variedade
Not available
title Raízes de funções de um complexo em uma variedade
spellingShingle Raízes de funções de um complexo em uma variedade
Aniz, Claudemir
Não disponível
Not available
title_short Raízes de funções de um complexo em uma variedade
title_full Raízes de funções de um complexo em uma variedade
title_fullStr Raízes de funções de um complexo em uma variedade
title_full_unstemmed Raízes de funções de um complexo em uma variedade
title_sort Raízes de funções de um complexo em uma variedade
author Aniz, Claudemir
author_facet Aniz, Claudemir
author_role author
dc.contributor.none.fl_str_mv Goncalves, Daciberg Lima
dc.contributor.author.fl_str_mv Aniz, Claudemir
dc.subject.por.fl_str_mv Não disponível
Not available
topic Não disponível
Not available
description O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.
publishDate 2002
dc.date.none.fl_str_mv 2002-09-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10012018-110156/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256840013873152