Functorial methods in representation theory with applications to monomial algebras

Detalhes bibliográficos
Autor(a) principal: Lobo, Daniel Negreiros
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/
Resumo: String algebras have become a staple of modern research into the representation theory of finite dimensional associative algebras. The indecomposable modules for these algebras have been known since Butler and Ringel introduced them, and they come in two flavours: the string and band modules. The goal of this thesis is to develop categorical ideas to motivate these classes of modules and the tools used to work with them. Explicitly, we will look to covering theory in order to define string and band modules. We restrict ourselves to the locally bounded case for the most part, as it is exactly what is needed for our purposes. This is not only an excuse to go through a pleasant stroll through the theory of Galois covers, but also a valuable insight which lead to the classification of morphisms between string modules by Crawley-Boevey and later extended to morphisms between band modules by Henning Krause. We will also study the functor category of a Krull-Schmidt category closely. This will be done in order to develop the functorial filtration method, which was a key part in the classification theorem of indecomposable modules for string algebras. We close off the text by providing an overview of how the method of functorial filtration was used in this particular case.
id USP_173d39d687733ee88d060a4c0edb96ee
oai_identifier_str oai:teses.usp.br:tde-05082024-144708
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Functorial methods in representation theory with applications to monomial algebrasMétodos funtoriais na teoria de representações com aplicações às álgebras monomiaisÁlgebras monomiaisÁlgebras stringCovering theoryMonomial algebrasRepresentation theory of associative algebrasString algebrasTeoria das representações de álgebras associativasTeoria de recobrimentoString algebras have become a staple of modern research into the representation theory of finite dimensional associative algebras. The indecomposable modules for these algebras have been known since Butler and Ringel introduced them, and they come in two flavours: the string and band modules. The goal of this thesis is to develop categorical ideas to motivate these classes of modules and the tools used to work with them. Explicitly, we will look to covering theory in order to define string and band modules. We restrict ourselves to the locally bounded case for the most part, as it is exactly what is needed for our purposes. This is not only an excuse to go through a pleasant stroll through the theory of Galois covers, but also a valuable insight which lead to the classification of morphisms between string modules by Crawley-Boevey and later extended to morphisms between band modules by Henning Krause. We will also study the functor category of a Krull-Schmidt category closely. This will be done in order to develop the functorial filtration method, which was a key part in the classification theorem of indecomposable modules for string algebras. We close off the text by providing an overview of how the method of functorial filtration was used in this particular case.Álgebras string formam uma classe importante na pesquisa moderna na teoria de representações de álgebras associativas. Os módulos indecomponíveis para essas álgebras são conhecidos desde que Butler e Ringel os apresentaram, e eles vêm em dois tipos, os módulos string e os módulos band. O objetivo deste artigo é desenvolver as ideias categóricas para motivar essas classes de módulos e as ferramentas usadas para trabalhar com eles. Explicitamente, olhamos para a teoria de recobrimento para definir módulos de strings e band. Nós nos restringimos ao caso localmente delimitado na maior parte, pois é exatamente o que é necessário para nossos propósitos. Isto não é apenas uma desculpa para introduzir ao leitor à teoria de Galois, como também fornece um ponto de vista interessante para tratar desses objetos. Isso levou, por exemplo, à classificação de morfismos entre módulos string por Crawley-Boevey e foi posteriormente estendido para morfismos entre módulos band por Henning Krause. Também estudaremos a categoria de funtores de uma categoria Krull-Schmidt. Isso será feito para desenvolver a método de filtração funtorial, que foi uma parte fundamental no teorema de classificação de módulos indecomponíveis para álgebras string. Encerramos o texto demonstrando como esse método foi utilizado nesse caso específico.Biblioteca Digitais de Teses e Dissertações da USPCoelho, Flavio UlhoaLobo, Daniel Negreiros2024-07-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-02T11:00:06Zoai:teses.usp.br:tde-05082024-144708Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-02T11:00:06Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Functorial methods in representation theory with applications to monomial algebras
Métodos funtoriais na teoria de representações com aplicações às álgebras monomiais
title Functorial methods in representation theory with applications to monomial algebras
spellingShingle Functorial methods in representation theory with applications to monomial algebras
Lobo, Daniel Negreiros
Álgebras monomiais
Álgebras string
Covering theory
Monomial algebras
Representation theory of associative algebras
String algebras
Teoria das representações de álgebras associativas
Teoria de recobrimento
title_short Functorial methods in representation theory with applications to monomial algebras
title_full Functorial methods in representation theory with applications to monomial algebras
title_fullStr Functorial methods in representation theory with applications to monomial algebras
title_full_unstemmed Functorial methods in representation theory with applications to monomial algebras
title_sort Functorial methods in representation theory with applications to monomial algebras
author Lobo, Daniel Negreiros
author_facet Lobo, Daniel Negreiros
author_role author
dc.contributor.none.fl_str_mv Coelho, Flavio Ulhoa
dc.contributor.author.fl_str_mv Lobo, Daniel Negreiros
dc.subject.por.fl_str_mv Álgebras monomiais
Álgebras string
Covering theory
Monomial algebras
Representation theory of associative algebras
String algebras
Teoria das representações de álgebras associativas
Teoria de recobrimento
topic Álgebras monomiais
Álgebras string
Covering theory
Monomial algebras
Representation theory of associative algebras
String algebras
Teoria das representações de álgebras associativas
Teoria de recobrimento
description String algebras have become a staple of modern research into the representation theory of finite dimensional associative algebras. The indecomposable modules for these algebras have been known since Butler and Ringel introduced them, and they come in two flavours: the string and band modules. The goal of this thesis is to develop categorical ideas to motivate these classes of modules and the tools used to work with them. Explicitly, we will look to covering theory in order to define string and band modules. We restrict ourselves to the locally bounded case for the most part, as it is exactly what is needed for our purposes. This is not only an excuse to go through a pleasant stroll through the theory of Galois covers, but also a valuable insight which lead to the classification of morphisms between string modules by Crawley-Boevey and later extended to morphisms between band modules by Henning Krause. We will also study the functor category of a Krull-Schmidt category closely. This will be done in order to develop the functorial filtration method, which was a key part in the classification theorem of indecomposable modules for string algebras. We close off the text by providing an overview of how the method of functorial filtration was used in this particular case.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/
url https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256489318678528