Functorial methods in representation theory with applications to monomial algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/ |
Resumo: | String algebras have become a staple of modern research into the representation theory of finite dimensional associative algebras. The indecomposable modules for these algebras have been known since Butler and Ringel introduced them, and they come in two flavours: the string and band modules. The goal of this thesis is to develop categorical ideas to motivate these classes of modules and the tools used to work with them. Explicitly, we will look to covering theory in order to define string and band modules. We restrict ourselves to the locally bounded case for the most part, as it is exactly what is needed for our purposes. This is not only an excuse to go through a pleasant stroll through the theory of Galois covers, but also a valuable insight which lead to the classification of morphisms between string modules by Crawley-Boevey and later extended to morphisms between band modules by Henning Krause. We will also study the functor category of a Krull-Schmidt category closely. This will be done in order to develop the functorial filtration method, which was a key part in the classification theorem of indecomposable modules for string algebras. We close off the text by providing an overview of how the method of functorial filtration was used in this particular case. |
id |
USP_173d39d687733ee88d060a4c0edb96ee |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05082024-144708 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Functorial methods in representation theory with applications to monomial algebrasMétodos funtoriais na teoria de representações com aplicações às álgebras monomiaisÁlgebras monomiaisÁlgebras stringCovering theoryMonomial algebrasRepresentation theory of associative algebrasString algebrasTeoria das representações de álgebras associativasTeoria de recobrimentoString algebras have become a staple of modern research into the representation theory of finite dimensional associative algebras. The indecomposable modules for these algebras have been known since Butler and Ringel introduced them, and they come in two flavours: the string and band modules. The goal of this thesis is to develop categorical ideas to motivate these classes of modules and the tools used to work with them. Explicitly, we will look to covering theory in order to define string and band modules. We restrict ourselves to the locally bounded case for the most part, as it is exactly what is needed for our purposes. This is not only an excuse to go through a pleasant stroll through the theory of Galois covers, but also a valuable insight which lead to the classification of morphisms between string modules by Crawley-Boevey and later extended to morphisms between band modules by Henning Krause. We will also study the functor category of a Krull-Schmidt category closely. This will be done in order to develop the functorial filtration method, which was a key part in the classification theorem of indecomposable modules for string algebras. We close off the text by providing an overview of how the method of functorial filtration was used in this particular case.Álgebras string formam uma classe importante na pesquisa moderna na teoria de representações de álgebras associativas. Os módulos indecomponíveis para essas álgebras são conhecidos desde que Butler e Ringel os apresentaram, e eles vêm em dois tipos, os módulos string e os módulos band. O objetivo deste artigo é desenvolver as ideias categóricas para motivar essas classes de módulos e as ferramentas usadas para trabalhar com eles. Explicitamente, olhamos para a teoria de recobrimento para definir módulos de strings e band. Nós nos restringimos ao caso localmente delimitado na maior parte, pois é exatamente o que é necessário para nossos propósitos. Isto não é apenas uma desculpa para introduzir ao leitor à teoria de Galois, como também fornece um ponto de vista interessante para tratar desses objetos. Isso levou, por exemplo, à classificação de morfismos entre módulos string por Crawley-Boevey e foi posteriormente estendido para morfismos entre módulos band por Henning Krause. Também estudaremos a categoria de funtores de uma categoria Krull-Schmidt. Isso será feito para desenvolver a método de filtração funtorial, que foi uma parte fundamental no teorema de classificação de módulos indecomponíveis para álgebras string. Encerramos o texto demonstrando como esse método foi utilizado nesse caso específico.Biblioteca Digitais de Teses e Dissertações da USPCoelho, Flavio UlhoaLobo, Daniel Negreiros2024-07-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-09-02T11:00:06Zoai:teses.usp.br:tde-05082024-144708Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-09-02T11:00:06Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Functorial methods in representation theory with applications to monomial algebras Métodos funtoriais na teoria de representações com aplicações às álgebras monomiais |
title |
Functorial methods in representation theory with applications to monomial algebras |
spellingShingle |
Functorial methods in representation theory with applications to monomial algebras Lobo, Daniel Negreiros Álgebras monomiais Álgebras string Covering theory Monomial algebras Representation theory of associative algebras String algebras Teoria das representações de álgebras associativas Teoria de recobrimento |
title_short |
Functorial methods in representation theory with applications to monomial algebras |
title_full |
Functorial methods in representation theory with applications to monomial algebras |
title_fullStr |
Functorial methods in representation theory with applications to monomial algebras |
title_full_unstemmed |
Functorial methods in representation theory with applications to monomial algebras |
title_sort |
Functorial methods in representation theory with applications to monomial algebras |
author |
Lobo, Daniel Negreiros |
author_facet |
Lobo, Daniel Negreiros |
author_role |
author |
dc.contributor.none.fl_str_mv |
Coelho, Flavio Ulhoa |
dc.contributor.author.fl_str_mv |
Lobo, Daniel Negreiros |
dc.subject.por.fl_str_mv |
Álgebras monomiais Álgebras string Covering theory Monomial algebras Representation theory of associative algebras String algebras Teoria das representações de álgebras associativas Teoria de recobrimento |
topic |
Álgebras monomiais Álgebras string Covering theory Monomial algebras Representation theory of associative algebras String algebras Teoria das representações de álgebras associativas Teoria de recobrimento |
description |
String algebras have become a staple of modern research into the representation theory of finite dimensional associative algebras. The indecomposable modules for these algebras have been known since Butler and Ringel introduced them, and they come in two flavours: the string and band modules. The goal of this thesis is to develop categorical ideas to motivate these classes of modules and the tools used to work with them. Explicitly, we will look to covering theory in order to define string and band modules. We restrict ourselves to the locally bounded case for the most part, as it is exactly what is needed for our purposes. This is not only an excuse to go through a pleasant stroll through the theory of Galois covers, but also a valuable insight which lead to the classification of morphisms between string modules by Crawley-Boevey and later extended to morphisms between band modules by Henning Krause. We will also study the functor category of a Krull-Schmidt category closely. This will be done in order to develop the functorial filtration method, which was a key part in the classification theorem of indecomposable modules for string algebras. We close off the text by providing an overview of how the method of functorial filtration was used in this particular case. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/ |
url |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082024-144708/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256489318678528 |