Operadores hipercíclicos e o critério de hiperciclicidade

Detalhes bibliográficos
Autor(a) principal: Augusto, Andre Quintal
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-01102015-120053/
Resumo: Dado um espaço vetorial topológico $X$ e um operador linear $T$ contínuo em $X$, dizemos que $T$ é {\\it hipercíclico} se, para algum $y \\in X$, o conjunto $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ for denso em $X$. Um dos principais resultados envolvendo operadores hipercíclicos consiste no chamado {\\it Critério de Hiperciclicidade}. Tal Critério fornece uma condição suficiente para que um operador linear contínuo seja hipercíclico. Por muitos anos, procurou-se saber se o Critério também era uma condição necessária. Em \\cite, Bayart e Matheron construíram, nos espaços de Banach clássicos $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, um operador hipercíclico $T$ que não satisfaz o Critério. Neste trabalho, apresentamos a construção realizada por Bayart e Matheron. Além disso, também apresentamos alguns resultados sobre hiperciclicidade.
id USP_17b682af6b591f04a789229ed402a4da
oai_identifier_str oai:teses.usp.br:tde-01102015-120053
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Operadores hipercíclicos e o critério de hiperciclicidadeHypercyclic operators and the hypercyclicity criterionCritério de hiperciclicidadeHiperciclicidadeHypercyclic operatorsHypercyclicityHypercyclicity criterionOperadores hipercíclicos.Dado um espaço vetorial topológico $X$ e um operador linear $T$ contínuo em $X$, dizemos que $T$ é {\\it hipercíclico} se, para algum $y \\in X$, o conjunto $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ for denso em $X$. Um dos principais resultados envolvendo operadores hipercíclicos consiste no chamado {\\it Critério de Hiperciclicidade}. Tal Critério fornece uma condição suficiente para que um operador linear contínuo seja hipercíclico. Por muitos anos, procurou-se saber se o Critério também era uma condição necessária. Em \\cite, Bayart e Matheron construíram, nos espaços de Banach clássicos $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, um operador hipercíclico $T$ que não satisfaz o Critério. Neste trabalho, apresentamos a construção realizada por Bayart e Matheron. Além disso, também apresentamos alguns resultados sobre hiperciclicidade.Given a topological vector space $X$ and a continuous linear operator $T$, we say that $T$ is {\\it hypercylic} if, for some $y \\in X$, the set $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ is dense in $X$. One of the main results concerning hypercyclic operators is the so-called {\\it Hypercyclicity Criterion}. Such Criterion gives a sufficient condition to a continuous linear operator be hypercyclic. For many years, it sought to know if the Criterion was also a necessary condition. In \\cite, Bayart and Matheron constructed, in the classical Banach spaces $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, a hypercyclic operator $T$ which doesn\'t satisfy the Criterion. In this work, we present the Bayart/Matheron construction. We also present some results about hypercyclicity.Biblioteca Digitais de Teses e Dissertações da USPRodrigues, Leonardo PellegriniAugusto, Andre Quintal2015-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-01102015-120053/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:58Zoai:teses.usp.br:tde-01102015-120053Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Operadores hipercíclicos e o critério de hiperciclicidade
Hypercyclic operators and the hypercyclicity criterion
title Operadores hipercíclicos e o critério de hiperciclicidade
spellingShingle Operadores hipercíclicos e o critério de hiperciclicidade
Augusto, Andre Quintal
Critério de hiperciclicidade
Hiperciclicidade
Hypercyclic operators
Hypercyclicity
Hypercyclicity criterion
Operadores hipercíclicos.
title_short Operadores hipercíclicos e o critério de hiperciclicidade
title_full Operadores hipercíclicos e o critério de hiperciclicidade
title_fullStr Operadores hipercíclicos e o critério de hiperciclicidade
title_full_unstemmed Operadores hipercíclicos e o critério de hiperciclicidade
title_sort Operadores hipercíclicos e o critério de hiperciclicidade
author Augusto, Andre Quintal
author_facet Augusto, Andre Quintal
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Leonardo Pellegrini
dc.contributor.author.fl_str_mv Augusto, Andre Quintal
dc.subject.por.fl_str_mv Critério de hiperciclicidade
Hiperciclicidade
Hypercyclic operators
Hypercyclicity
Hypercyclicity criterion
Operadores hipercíclicos.
topic Critério de hiperciclicidade
Hiperciclicidade
Hypercyclic operators
Hypercyclicity
Hypercyclicity criterion
Operadores hipercíclicos.
description Dado um espaço vetorial topológico $X$ e um operador linear $T$ contínuo em $X$, dizemos que $T$ é {\\it hipercíclico} se, para algum $y \\in X$, o conjunto $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ for denso em $X$. Um dos principais resultados envolvendo operadores hipercíclicos consiste no chamado {\\it Critério de Hiperciclicidade}. Tal Critério fornece uma condição suficiente para que um operador linear contínuo seja hipercíclico. Por muitos anos, procurou-se saber se o Critério também era uma condição necessária. Em \\cite, Bayart e Matheron construíram, nos espaços de Banach clássicos $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, um operador hipercíclico $T$ que não satisfaz o Critério. Neste trabalho, apresentamos a construção realizada por Bayart e Matheron. Além disso, também apresentamos alguns resultados sobre hiperciclicidade.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45131/tde-01102015-120053/
url http://www.teses.usp.br/teses/disponiveis/45/45131/tde-01102015-120053/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256589065519104