Modelos de regressão lineares mistos sob a classe de distribuições normal-potência
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15032018-132547/ |
Resumo: | Neste trabalho são apresentadas algumas extensões dos modelos potência-alfa assumindo o contexto em que as observações estão censuradas ou limitadas. Inicialmente propomos um novo modelo assimétrico que estende os modelos t-assimétrico (Azzalini e Capitanio, 2003) e t-potência (Zhao e Kim, 2016) e inclui a distribuição t de Student como caso particular. Este novo modelo é capaz de ajustar dados com alto grau de assimetria e curtose, ainda maior do que os modelos t-assimétrico e t-potência. Em seguida estendemos o modelo t-potência às situações em que os dados apresentam censura, com alto grau de assimetria e caudas pesadas. Este modelo generaliza o modelo de regressão linear t de Student para dados censurados por Arellano-Valle et al. (2012). O trabalho também introduz o modelo linear misto normal-potência para dados assimétricos. Aqui a inferência estatística é realizada desde uma perspectiva clássica usando o método de máxima verossimilhança junto com o método de integração numérica de Gauss-Hermite para aproximar as integrais envolvidas na função de verossimilhança. Mais tarde, o modelo linear com interceptos aleatórios para dados duplamente censurados é estudado. Este modelo é desenvolvido sob a suposição de que os erros e os efeitos aleatórios seguem distribuições normal-potência e normal- assimétrica. Para todos os modelos estudados foram realizados estudos de simulação a fim de estudar as suas bondades de ajuste e limitações. Finalmente, ilustram-se todos os métodos propostos com dados reais. |
id |
USP_17b6de2310034de27df2f2d6340d71ef |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15032018-132547 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potênciaLinear mixed regression models under the power-normal class distributionsDistribuição normal-assimétricaDistribuição normal-potênciaEstimação por máxima verossimilhançaGauss-Hermite quadratureLinear mixed modelsMaximum likelihood estimationModelos lineares mistosPower-normal distributionQuadratura de Gauss-HermiteSkew-normal distributionNeste trabalho são apresentadas algumas extensões dos modelos potência-alfa assumindo o contexto em que as observações estão censuradas ou limitadas. Inicialmente propomos um novo modelo assimétrico que estende os modelos t-assimétrico (Azzalini e Capitanio, 2003) e t-potência (Zhao e Kim, 2016) e inclui a distribuição t de Student como caso particular. Este novo modelo é capaz de ajustar dados com alto grau de assimetria e curtose, ainda maior do que os modelos t-assimétrico e t-potência. Em seguida estendemos o modelo t-potência às situações em que os dados apresentam censura, com alto grau de assimetria e caudas pesadas. Este modelo generaliza o modelo de regressão linear t de Student para dados censurados por Arellano-Valle et al. (2012). O trabalho também introduz o modelo linear misto normal-potência para dados assimétricos. Aqui a inferência estatística é realizada desde uma perspectiva clássica usando o método de máxima verossimilhança junto com o método de integração numérica de Gauss-Hermite para aproximar as integrais envolvidas na função de verossimilhança. Mais tarde, o modelo linear com interceptos aleatórios para dados duplamente censurados é estudado. Este modelo é desenvolvido sob a suposição de que os erros e os efeitos aleatórios seguem distribuições normal-potência e normal- assimétrica. Para todos os modelos estudados foram realizados estudos de simulação a fim de estudar as suas bondades de ajuste e limitações. Finalmente, ilustram-se todos os métodos propostos com dados reais.In this work some extensions of the alpha-power models are presented, assuming the context in which the observations are censored or limited. Initially we propose a new asymmetric model that extends the skew-t (Azzalini e Capitanio, 2003) and power-t (Zhao e Kim, 2016) models and includes the Students t-distribution as a particular case. This new model is able to adjust data with a high degree of asymmetry and cursose, even higher than the skew-t and power-t models. Then we extend the power-t model to situations in which the data present censorship, with a high degree of asymmetry and heavy tails. This model generalizes the Students t linear censored regression model t by Arellano-Valle et al. (2012) The work also introduces the power-normal linear mixed model for asymmetric data. Here statistical inference is performed from a classical perspective using the maximum likelihood method together with the Gauss-Hermite numerical integration method to approximate the integrals involved in the likelihood function. Later, the linear model with random intercepts for doubly censored data is studied. This model is developed under the assumption that errors and random effects follow power-normal and skew-normal distributions. For all the models studied, simulation studies were carried out to study their benefits and limitations. Finally, all proposed methods with real data are illustrated.Biblioteca Digitais de Teses e Dissertações da USPBolfarine, HelenoFlorez, Guillermo Domingo MartinezFalon, Roger Jesus Tovar2017-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-15032018-132547/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T17:57:02Zoai:teses.usp.br:tde-15032018-132547Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T17:57:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência Linear mixed regression models under the power-normal class distributions |
title |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência |
spellingShingle |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência Falon, Roger Jesus Tovar Distribuição normal-assimétrica Distribuição normal-potência Estimação por máxima verossimilhança Gauss-Hermite quadrature Linear mixed models Maximum likelihood estimation Modelos lineares mistos Power-normal distribution Quadratura de Gauss-Hermite Skew-normal distribution |
title_short |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência |
title_full |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência |
title_fullStr |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência |
title_full_unstemmed |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência |
title_sort |
Modelos de regressão lineares mistos sob a classe de distribuições normal-potência |
author |
Falon, Roger Jesus Tovar |
author_facet |
Falon, Roger Jesus Tovar |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bolfarine, Heleno Florez, Guillermo Domingo Martinez |
dc.contributor.author.fl_str_mv |
Falon, Roger Jesus Tovar |
dc.subject.por.fl_str_mv |
Distribuição normal-assimétrica Distribuição normal-potência Estimação por máxima verossimilhança Gauss-Hermite quadrature Linear mixed models Maximum likelihood estimation Modelos lineares mistos Power-normal distribution Quadratura de Gauss-Hermite Skew-normal distribution |
topic |
Distribuição normal-assimétrica Distribuição normal-potência Estimação por máxima verossimilhança Gauss-Hermite quadrature Linear mixed models Maximum likelihood estimation Modelos lineares mistos Power-normal distribution Quadratura de Gauss-Hermite Skew-normal distribution |
description |
Neste trabalho são apresentadas algumas extensões dos modelos potência-alfa assumindo o contexto em que as observações estão censuradas ou limitadas. Inicialmente propomos um novo modelo assimétrico que estende os modelos t-assimétrico (Azzalini e Capitanio, 2003) e t-potência (Zhao e Kim, 2016) e inclui a distribuição t de Student como caso particular. Este novo modelo é capaz de ajustar dados com alto grau de assimetria e curtose, ainda maior do que os modelos t-assimétrico e t-potência. Em seguida estendemos o modelo t-potência às situações em que os dados apresentam censura, com alto grau de assimetria e caudas pesadas. Este modelo generaliza o modelo de regressão linear t de Student para dados censurados por Arellano-Valle et al. (2012). O trabalho também introduz o modelo linear misto normal-potência para dados assimétricos. Aqui a inferência estatística é realizada desde uma perspectiva clássica usando o método de máxima verossimilhança junto com o método de integração numérica de Gauss-Hermite para aproximar as integrais envolvidas na função de verossimilhança. Mais tarde, o modelo linear com interceptos aleatórios para dados duplamente censurados é estudado. Este modelo é desenvolvido sob a suposição de que os erros e os efeitos aleatórios seguem distribuições normal-potência e normal- assimétrica. Para todos os modelos estudados foram realizados estudos de simulação a fim de estudar as suas bondades de ajuste e limitações. Finalmente, ilustram-se todos os métodos propostos com dados reais. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15032018-132547/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15032018-132547/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256987516010496 |