Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais

Detalhes bibliográficos
Autor(a) principal: Usuga Manco, Olga Cecilia
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072013-234405/
Resumo: A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1).
id USP_5abc57de666fb93946c1d5d33bddcdf8
oai_identifier_str oai:teses.usp.br:tde-10072013-234405
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinaisBeta regression models with normal and not normal random effects for longitudinal dataBeta regression modelGauss-Hermite quadraturelinear mixed modelsmáxima verossimilhançamaximum likelihood.Modelo de regressão betamodelos lineares mistosquadratura de Gauss-HermiteA classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1).The class of beta regression models has been studied extensively. However, there are few studies on the inclusion of random effects and models with flexible random effects distributions besides prediction and diagnostic methods. In this work we proposed a beta regression models with normal and not normal random effects for longitudinal data. The maximum likelihood method and the empirical Bayes approach are used to obtain the estimates and the best prediction. Also, the Gauss-Hermite quadrature is used to approximate the likelihood function. Model selection methods and residual analysis were also proposed.We implemented a BLMM package in R to perform all procedures. The estimation procedure and the empirical distribution of residuals were analyzed through simulation studies considering differents random effects distributions, values for the number of individuals, number of observations per individual and covariance structures for the random effects. The results of simulation studies showed that the estimation procedure obtain better results when the number of individuals and the number of observations per individual increase. These studies also showed that the empirical distribution of the quantile randomized residual follows a normal distribution. The methodolgy presented is a tool for analyzing longitudinal data restricted to a interval (0; 1).Biblioteca Digitais de Teses e Dissertações da USPGiampaoli, VivianaUsuga Manco, Olga Cecilia 2013-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072013-234405/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T14:38:03Zoai:teses.usp.br:tde-10072013-234405Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T14:38:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
Beta regression models with normal and not normal random effects for longitudinal data
title Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
spellingShingle Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
Usuga Manco, Olga Cecilia
Beta regression model
Gauss-Hermite quadrature
linear mixed models
máxima verossimilhança
maximum likelihood.
Modelo de regressão beta
modelos lineares mistos
quadratura de Gauss-Hermite
title_short Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
title_full Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
title_fullStr Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
title_full_unstemmed Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
title_sort Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais
author Usuga Manco, Olga Cecilia
author_facet Usuga Manco, Olga Cecilia
author_role author
dc.contributor.none.fl_str_mv Giampaoli, Viviana
dc.contributor.author.fl_str_mv Usuga Manco, Olga Cecilia
dc.subject.por.fl_str_mv Beta regression model
Gauss-Hermite quadrature
linear mixed models
máxima verossimilhança
maximum likelihood.
Modelo de regressão beta
modelos lineares mistos
quadratura de Gauss-Hermite
topic Beta regression model
Gauss-Hermite quadrature
linear mixed models
máxima verossimilhança
maximum likelihood.
Modelo de regressão beta
modelos lineares mistos
quadratura de Gauss-Hermite
description A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1).
publishDate 2013
dc.date.none.fl_str_mv 2013-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072013-234405/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-10072013-234405/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256915203063808