A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência

Detalhes bibliográficos
Autor(a) principal: Vigas, Valdemiro Piedade
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/
Resumo: O presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família.
id USP_1db946aa67bc7b046d8fc80e3bbb8af2
oai_identifier_str oai:teses.usp.br:tde-09052022-155332
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivênciaThe new family of generalized odd log-logistic distributions: applications in survival analysisAnálise de resíduosAnálise de sensibilidadeAnálise de sobrevivênciaCensura informativaCensura intervalarDistributions familyFamília de distribuiçõesInformative-censoringInterval-censoringLong-termLonga duraçãoModelo de regressãoRegression modelResidual analysisSensitivity analysisSurvival analysisO presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família.The present work proposes a class of models that are based on a continuous distributions family, called generalized odd log-logistic, considering some scenarios that frequently occur in the survival analysis. Initially, a new family of survival models is presented and entitled Neyman type A generalized odd log-logistic-G-family with cure fraction. This model is based on different activation schemes in which the number of factors fits a discrete Neyman type A distribution and the time until the occurrence of the event follows a family of generalized odd log-logistic continuous distributions. The presented methodology is also applied in a similar way in the presence of the covariates through the regression model. Furthermore, it is common in practical situations that there are survival data with information in the censoring. Thus, another objective of this work is to introduce the generalized odd log-logistic family in the context of informative censoring. The proposed model is founded upon the assumption that failure and censorship times are conditionally independent given a fragility, in which the variables of censorship and fragility fit the generalized odd log-logistic and Gamma distributions, respectively. Such methodology is also applied in an analogous form through the regression model. The last approach addressed is the use of the generalized odd-log-logistics family in the presence of interval censorship, both in the absence and in the presence of covariates, via the regression model. The choice of this censorship mechanism is suitable when the exact failure times are not known, knowing only that they occurred within a time interval and not at a specific point. The classical and bayesian analyzes are used to estimate the model parameters. Different simulation studies were carried out in order to study the means, the bias and the root of the mean square error of the maximum likelihood estimates of the models in the different activation schemes, parameter values, sample sizes and censorship levels. Model selection criteria are also applied, in addition to graphic techniques such as TTT-Plot and Kaplan-Meier. Sensitivity and residual analyzes are used to verify the assumptions of the regression model. Finally, real data sets are used to demonstrate the suitability of this family.Biblioteca Digitais de Teses e Dissertações da USPOrtega, Edwin Moises MarcosVigas, Valdemiro Piedade2022-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-05-10T13:24:40Zoai:teses.usp.br:tde-09052022-155332Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-10T13:24:40Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
The new family of generalized odd log-logistic distributions: applications in survival analysis
title A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
spellingShingle A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
Vigas, Valdemiro Piedade
Análise de resíduos
Análise de sensibilidade
Análise de sobrevivência
Censura informativa
Censura intervalar
Distributions family
Família de distribuições
Informative-censoring
Interval-censoring
Long-term
Longa duração
Modelo de regressão
Regression model
Residual analysis
Sensitivity analysis
Survival analysis
title_short A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
title_full A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
title_fullStr A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
title_full_unstemmed A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
title_sort A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
author Vigas, Valdemiro Piedade
author_facet Vigas, Valdemiro Piedade
author_role author
dc.contributor.none.fl_str_mv Ortega, Edwin Moises Marcos
dc.contributor.author.fl_str_mv Vigas, Valdemiro Piedade
dc.subject.por.fl_str_mv Análise de resíduos
Análise de sensibilidade
Análise de sobrevivência
Censura informativa
Censura intervalar
Distributions family
Família de distribuições
Informative-censoring
Interval-censoring
Long-term
Longa duração
Modelo de regressão
Regression model
Residual analysis
Sensitivity analysis
Survival analysis
topic Análise de resíduos
Análise de sensibilidade
Análise de sobrevivência
Censura informativa
Censura intervalar
Distributions family
Família de distribuições
Informative-censoring
Interval-censoring
Long-term
Longa duração
Modelo de regressão
Regression model
Residual analysis
Sensitivity analysis
Survival analysis
description O presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/
url https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256832776601600