A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/ |
Resumo: | O presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família. |
id |
USP_1db946aa67bc7b046d8fc80e3bbb8af2 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-09052022-155332 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivênciaThe new family of generalized odd log-logistic distributions: applications in survival analysisAnálise de resíduosAnálise de sensibilidadeAnálise de sobrevivênciaCensura informativaCensura intervalarDistributions familyFamília de distribuiçõesInformative-censoringInterval-censoringLong-termLonga duraçãoModelo de regressãoRegression modelResidual analysisSensitivity analysisSurvival analysisO presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família.The present work proposes a class of models that are based on a continuous distributions family, called generalized odd log-logistic, considering some scenarios that frequently occur in the survival analysis. Initially, a new family of survival models is presented and entitled Neyman type A generalized odd log-logistic-G-family with cure fraction. This model is based on different activation schemes in which the number of factors fits a discrete Neyman type A distribution and the time until the occurrence of the event follows a family of generalized odd log-logistic continuous distributions. The presented methodology is also applied in a similar way in the presence of the covariates through the regression model. Furthermore, it is common in practical situations that there are survival data with information in the censoring. Thus, another objective of this work is to introduce the generalized odd log-logistic family in the context of informative censoring. The proposed model is founded upon the assumption that failure and censorship times are conditionally independent given a fragility, in which the variables of censorship and fragility fit the generalized odd log-logistic and Gamma distributions, respectively. Such methodology is also applied in an analogous form through the regression model. The last approach addressed is the use of the generalized odd-log-logistics family in the presence of interval censorship, both in the absence and in the presence of covariates, via the regression model. The choice of this censorship mechanism is suitable when the exact failure times are not known, knowing only that they occurred within a time interval and not at a specific point. The classical and bayesian analyzes are used to estimate the model parameters. Different simulation studies were carried out in order to study the means, the bias and the root of the mean square error of the maximum likelihood estimates of the models in the different activation schemes, parameter values, sample sizes and censorship levels. Model selection criteria are also applied, in addition to graphic techniques such as TTT-Plot and Kaplan-Meier. Sensitivity and residual analyzes are used to verify the assumptions of the regression model. Finally, real data sets are used to demonstrate the suitability of this family.Biblioteca Digitais de Teses e Dissertações da USPOrtega, Edwin Moises MarcosVigas, Valdemiro Piedade2022-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-05-10T13:24:40Zoai:teses.usp.br:tde-09052022-155332Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-05-10T13:24:40Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência The new family of generalized odd log-logistic distributions: applications in survival analysis |
title |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência |
spellingShingle |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência Vigas, Valdemiro Piedade Análise de resíduos Análise de sensibilidade Análise de sobrevivência Censura informativa Censura intervalar Distributions family Família de distribuições Informative-censoring Interval-censoring Long-term Longa duração Modelo de regressão Regression model Residual analysis Sensitivity analysis Survival analysis |
title_short |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência |
title_full |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência |
title_fullStr |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência |
title_full_unstemmed |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência |
title_sort |
A nova família de distribuições odd log-logística generalizada: aplicações em análise de sobrevivência |
author |
Vigas, Valdemiro Piedade |
author_facet |
Vigas, Valdemiro Piedade |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ortega, Edwin Moises Marcos |
dc.contributor.author.fl_str_mv |
Vigas, Valdemiro Piedade |
dc.subject.por.fl_str_mv |
Análise de resíduos Análise de sensibilidade Análise de sobrevivência Censura informativa Censura intervalar Distributions family Família de distribuições Informative-censoring Interval-censoring Long-term Longa duração Modelo de regressão Regression model Residual analysis Sensitivity analysis Survival analysis |
topic |
Análise de resíduos Análise de sensibilidade Análise de sobrevivência Censura informativa Censura intervalar Distributions family Família de distribuições Informative-censoring Interval-censoring Long-term Longa duração Modelo de regressão Regression model Residual analysis Sensitivity analysis Survival analysis |
description |
O presente trabalho propõe uma classe de modelos que se baseia numa família de distribuições contínuas, intitulada de odd log-logística generalizada, considerando alguns cenários que ocorrem com frequência na análise de sobrevivência. Inicialmente, apresenta-se uma nova família de modelos de sobrevivência denominada Neyman tipo A odd log-logística generalizada de longa duração. Esta, fundamenta-se nos diferentes esquemas de ativação em que a quantidade de fatores se adéqua a uma distribuição discreta Neyman tipo A e o tempo até a ocorrência do evento segue uma família de distribuições contínuas odd log-logística generalizada. A metodologia apresentada também é aplicada de forma similar na presença das covariáveis por meio do modelo de regressão. Além disso, é comum em situações práticas que existam dados de sobrevida com informações na censura. Assim, outro objetivo deste trabalho é introduzir a família odd log-logística generalizada no contexto de censura informativa. O modelo proposto se fundamenta na suposição de que os tempos de falha e de censura são condicionalmente independentes dada uma fragilidade, na qual as variáveis de censura e fragilidade se ajustam às distribuições odd log-logística generalizada e gama, respectivamente. Tal metodologia também se aplica de maneira análoga através do modelo de regressão. O último enfoque abordado é a utilização da família odd log-logística generalizada na presença da censura intervalar tanto na ausência, quanto na presença de covariáveis por meio do modelo de regressão. A escolha deste mecanismo de censura é adequado quando o tempos exatos de falha não são conhecidos, sabendo-se apenas que os mesmos ocorreram dentro de um intervalo de tempo e não em um ponto específico. As análises clássica e Bayesiana são utilizadas para a estimação dos parâmetros dos modelos. Realiza-se diferentes estudos de simulação com o intuito de estudar a média, o viés e a raiz do erro quadrático médio das estimativas de máxima verossimilhança dos modelos nos diferentes esquemas de ativação, valores de parâmetros, tamanhos de amostra e percentuais de censura. Critérios de seleção de modelos também são aplicados, além das técnicas gráficas como TTT-Plot e Kaplan-Meier. Utiliza-se as análises de sensibilidade e de resíduos para verificar as suposições do modelo de regressão. Por fim, conjuntos de dados reais são apresentados para demonstrar a adequabilidade dessa família. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11134/tde-09052022-155332/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256832776601600 |