Modelagem de salto-difusão para a taxa DI: duas abordagens

Detalhes bibliográficos
Autor(a) principal: Amaral, João Pedro Nascimento do
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/
Resumo: O presente trabalho busca primeiramente modelar a curva de juros diária (DI) através de vários modelos de equações diferenciais estocásticas estimando-as através de dois métodos de estimação. O primeiro através da estimação usando o método de quasi-máxima verossimilhança (QMLE) e o segundo usando a estimação Bayesiana. Inicialmente o objetivo foi o de comparar as duas formas por meio das propriedades estatísticas, calculadas através da simulação e discretização de Euler - Maruyama, dos coeficientes das equações que são dadas pelo viés, MAE, ME e RMSE. Posterior a isso foram feitas trajetórias para comparação dentro da amostra e obtenção do RMSE da curva. Visto que em ambas as estimações os resultados apresentaram RMSE e viés considerável nos coeficientes, foi incluída a presença de saltos nos modelos para verificação de melhora na aderência dos modelos. O intuito, inicialmente, foi modelar a distribuição de saltos, partindo da hipótese de que os quantis mais extremos da primeira diferença da curva DI seriam saltos. Estes quantis apresentaram fortes evidências da distribuição para valores extremos (GEV). Posteriormente foi constatado que os saltos nos tempos de chegada seguindo uma distribuição de Poisson não-homogênea, traziam mais fortes evidências do que a modelagem homogênea quando incluídas as variáveis explicativas abordadas. O estudo demonstrou fortes evidências para a maioria dos modelos usados que a inclusão de saltos melhorou o ajuste baseado no RMSE para a curva de juros diária. Posteriormente a isso, foi feita a estimação por QMLE de forma convencional de um processo de salto-difusão sem a definição de saltos construída inicialmente. O estudo buscou comparar os resultados das duas abordagens de saltos e os resultados se mostraram parecidos no que foi considerado saltos, embora o número de tais eventos tenha sido menor. E também para esta estimação não foram obtidas grandes conclusões na comparação com a estimação por QMLE e Bayesiana feitas inicialmente.
id USP_20433279ca1c2b176d370d8e0b86c278
oai_identifier_str oai:teses.usp.br:tde-19082020-162218
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelagem de salto-difusão para a taxa DI: duas abordagensJump-Difusion model to DI interest rate: two approachesDiffusionDifusãoJumpSaltosSDESDEO presente trabalho busca primeiramente modelar a curva de juros diária (DI) através de vários modelos de equações diferenciais estocásticas estimando-as através de dois métodos de estimação. O primeiro através da estimação usando o método de quasi-máxima verossimilhança (QMLE) e o segundo usando a estimação Bayesiana. Inicialmente o objetivo foi o de comparar as duas formas por meio das propriedades estatísticas, calculadas através da simulação e discretização de Euler - Maruyama, dos coeficientes das equações que são dadas pelo viés, MAE, ME e RMSE. Posterior a isso foram feitas trajetórias para comparação dentro da amostra e obtenção do RMSE da curva. Visto que em ambas as estimações os resultados apresentaram RMSE e viés considerável nos coeficientes, foi incluída a presença de saltos nos modelos para verificação de melhora na aderência dos modelos. O intuito, inicialmente, foi modelar a distribuição de saltos, partindo da hipótese de que os quantis mais extremos da primeira diferença da curva DI seriam saltos. Estes quantis apresentaram fortes evidências da distribuição para valores extremos (GEV). Posteriormente foi constatado que os saltos nos tempos de chegada seguindo uma distribuição de Poisson não-homogênea, traziam mais fortes evidências do que a modelagem homogênea quando incluídas as variáveis explicativas abordadas. O estudo demonstrou fortes evidências para a maioria dos modelos usados que a inclusão de saltos melhorou o ajuste baseado no RMSE para a curva de juros diária. Posteriormente a isso, foi feita a estimação por QMLE de forma convencional de um processo de salto-difusão sem a definição de saltos construída inicialmente. O estudo buscou comparar os resultados das duas abordagens de saltos e os resultados se mostraram parecidos no que foi considerado saltos, embora o número de tais eventos tenha sido menor. E também para esta estimação não foram obtidas grandes conclusões na comparação com a estimação por QMLE e Bayesiana feitas inicialmente.The present work seeks first to model the daily interest curve (DI) using various models of stochastic differential equations estimating them using two estimation methods. The first through estimation by quasimaximum likelihood method (QMLE) and the second using Bayesian estimation. Initially the objective was to compare the two forms by statistical properties, calculated through the simulation/discretization of Euler - Maruyama, of the coefficients of the equations that are given by the bias, MAE, ME and RMSE. After that, trajectories were made for comparison within the sample and obtaining the RMSE of the curve. Since in both estimates the results showed considerable bias and RMSE in the coefficients, the presence of jumps in the models was included to verify the improvement in the adherence of the models. The intention was initially to model the distribution of jumps, based on the hypothesis that the most extreme quantiles of the first difference on the DI curve would be jumps. These quantiles showed strong evidence of the distribution for extreme values (GEV). Subsequently it was found that the jumps in the arrival times following a non-homogeneous Poisson distribution, brought stronger evidence than homogeneous modeling when the explanatory variables were included. The study demonstrated strong evidence for most models used that the inclusion of jumps improved the adjustment based on RMSE for the daily interest curve. Subsequently, QMLE was estimated in a conventional way of a jump-diffusion process without the jump definition initially constructed. The study sought to compare the results of the two approaches to jumps and the results were similar in what was considered jumps, although the number of such events was lower. Also, for this estimation, no major conclusions were obtained in comparison with the estimation by QMLE and Bayesian made initially.Biblioteca Digitais de Teses e Dissertações da USPLaurini, Marcio PolettiAmaral, João Pedro Nascimento do2020-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-11-19T16:59:02Zoai:teses.usp.br:tde-19082020-162218Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-11-19T16:59:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelagem de salto-difusão para a taxa DI: duas abordagens
Jump-Difusion model to DI interest rate: two approaches
title Modelagem de salto-difusão para a taxa DI: duas abordagens
spellingShingle Modelagem de salto-difusão para a taxa DI: duas abordagens
Amaral, João Pedro Nascimento do
Diffusion
Difusão
Jump
Saltos
SDE
SDE
title_short Modelagem de salto-difusão para a taxa DI: duas abordagens
title_full Modelagem de salto-difusão para a taxa DI: duas abordagens
title_fullStr Modelagem de salto-difusão para a taxa DI: duas abordagens
title_full_unstemmed Modelagem de salto-difusão para a taxa DI: duas abordagens
title_sort Modelagem de salto-difusão para a taxa DI: duas abordagens
author Amaral, João Pedro Nascimento do
author_facet Amaral, João Pedro Nascimento do
author_role author
dc.contributor.none.fl_str_mv Laurini, Marcio Poletti
dc.contributor.author.fl_str_mv Amaral, João Pedro Nascimento do
dc.subject.por.fl_str_mv Diffusion
Difusão
Jump
Saltos
SDE
SDE
topic Diffusion
Difusão
Jump
Saltos
SDE
SDE
description O presente trabalho busca primeiramente modelar a curva de juros diária (DI) através de vários modelos de equações diferenciais estocásticas estimando-as através de dois métodos de estimação. O primeiro através da estimação usando o método de quasi-máxima verossimilhança (QMLE) e o segundo usando a estimação Bayesiana. Inicialmente o objetivo foi o de comparar as duas formas por meio das propriedades estatísticas, calculadas através da simulação e discretização de Euler - Maruyama, dos coeficientes das equações que são dadas pelo viés, MAE, ME e RMSE. Posterior a isso foram feitas trajetórias para comparação dentro da amostra e obtenção do RMSE da curva. Visto que em ambas as estimações os resultados apresentaram RMSE e viés considerável nos coeficientes, foi incluída a presença de saltos nos modelos para verificação de melhora na aderência dos modelos. O intuito, inicialmente, foi modelar a distribuição de saltos, partindo da hipótese de que os quantis mais extremos da primeira diferença da curva DI seriam saltos. Estes quantis apresentaram fortes evidências da distribuição para valores extremos (GEV). Posteriormente foi constatado que os saltos nos tempos de chegada seguindo uma distribuição de Poisson não-homogênea, traziam mais fortes evidências do que a modelagem homogênea quando incluídas as variáveis explicativas abordadas. O estudo demonstrou fortes evidências para a maioria dos modelos usados que a inclusão de saltos melhorou o ajuste baseado no RMSE para a curva de juros diária. Posteriormente a isso, foi feita a estimação por QMLE de forma convencional de um processo de salto-difusão sem a definição de saltos construída inicialmente. O estudo buscou comparar os resultados das duas abordagens de saltos e os resultados se mostraram parecidos no que foi considerado saltos, embora o número de tais eventos tenha sido menor. E também para esta estimação não foram obtidas grandes conclusões na comparação com a estimação por QMLE e Bayesiana feitas inicialmente.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/
url https://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257176564826112