Modelagem de salto-difusão para a taxa DI: duas abordagens
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/ |
Resumo: | O presente trabalho busca primeiramente modelar a curva de juros diária (DI) através de vários modelos de equações diferenciais estocásticas estimando-as através de dois métodos de estimação. O primeiro através da estimação usando o método de quasi-máxima verossimilhança (QMLE) e o segundo usando a estimação Bayesiana. Inicialmente o objetivo foi o de comparar as duas formas por meio das propriedades estatísticas, calculadas através da simulação e discretização de Euler - Maruyama, dos coeficientes das equações que são dadas pelo viés, MAE, ME e RMSE. Posterior a isso foram feitas trajetórias para comparação dentro da amostra e obtenção do RMSE da curva. Visto que em ambas as estimações os resultados apresentaram RMSE e viés considerável nos coeficientes, foi incluída a presença de saltos nos modelos para verificação de melhora na aderência dos modelos. O intuito, inicialmente, foi modelar a distribuição de saltos, partindo da hipótese de que os quantis mais extremos da primeira diferença da curva DI seriam saltos. Estes quantis apresentaram fortes evidências da distribuição para valores extremos (GEV). Posteriormente foi constatado que os saltos nos tempos de chegada seguindo uma distribuição de Poisson não-homogênea, traziam mais fortes evidências do que a modelagem homogênea quando incluídas as variáveis explicativas abordadas. O estudo demonstrou fortes evidências para a maioria dos modelos usados que a inclusão de saltos melhorou o ajuste baseado no RMSE para a curva de juros diária. Posteriormente a isso, foi feita a estimação por QMLE de forma convencional de um processo de salto-difusão sem a definição de saltos construída inicialmente. O estudo buscou comparar os resultados das duas abordagens de saltos e os resultados se mostraram parecidos no que foi considerado saltos, embora o número de tais eventos tenha sido menor. E também para esta estimação não foram obtidas grandes conclusões na comparação com a estimação por QMLE e Bayesiana feitas inicialmente. |
id |
USP_20433279ca1c2b176d370d8e0b86c278 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-19082020-162218 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Modelagem de salto-difusão para a taxa DI: duas abordagensJump-Difusion model to DI interest rate: two approachesDiffusionDifusãoJumpSaltosSDESDEO presente trabalho busca primeiramente modelar a curva de juros diária (DI) através de vários modelos de equações diferenciais estocásticas estimando-as através de dois métodos de estimação. O primeiro através da estimação usando o método de quasi-máxima verossimilhança (QMLE) e o segundo usando a estimação Bayesiana. Inicialmente o objetivo foi o de comparar as duas formas por meio das propriedades estatísticas, calculadas através da simulação e discretização de Euler - Maruyama, dos coeficientes das equações que são dadas pelo viés, MAE, ME e RMSE. Posterior a isso foram feitas trajetórias para comparação dentro da amostra e obtenção do RMSE da curva. Visto que em ambas as estimações os resultados apresentaram RMSE e viés considerável nos coeficientes, foi incluída a presença de saltos nos modelos para verificação de melhora na aderência dos modelos. O intuito, inicialmente, foi modelar a distribuição de saltos, partindo da hipótese de que os quantis mais extremos da primeira diferença da curva DI seriam saltos. Estes quantis apresentaram fortes evidências da distribuição para valores extremos (GEV). Posteriormente foi constatado que os saltos nos tempos de chegada seguindo uma distribuição de Poisson não-homogênea, traziam mais fortes evidências do que a modelagem homogênea quando incluídas as variáveis explicativas abordadas. O estudo demonstrou fortes evidências para a maioria dos modelos usados que a inclusão de saltos melhorou o ajuste baseado no RMSE para a curva de juros diária. Posteriormente a isso, foi feita a estimação por QMLE de forma convencional de um processo de salto-difusão sem a definição de saltos construída inicialmente. O estudo buscou comparar os resultados das duas abordagens de saltos e os resultados se mostraram parecidos no que foi considerado saltos, embora o número de tais eventos tenha sido menor. E também para esta estimação não foram obtidas grandes conclusões na comparação com a estimação por QMLE e Bayesiana feitas inicialmente.The present work seeks first to model the daily interest curve (DI) using various models of stochastic differential equations estimating them using two estimation methods. The first through estimation by quasimaximum likelihood method (QMLE) and the second using Bayesian estimation. Initially the objective was to compare the two forms by statistical properties, calculated through the simulation/discretization of Euler - Maruyama, of the coefficients of the equations that are given by the bias, MAE, ME and RMSE. After that, trajectories were made for comparison within the sample and obtaining the RMSE of the curve. Since in both estimates the results showed considerable bias and RMSE in the coefficients, the presence of jumps in the models was included to verify the improvement in the adherence of the models. The intention was initially to model the distribution of jumps, based on the hypothesis that the most extreme quantiles of the first difference on the DI curve would be jumps. These quantiles showed strong evidence of the distribution for extreme values (GEV). Subsequently it was found that the jumps in the arrival times following a non-homogeneous Poisson distribution, brought stronger evidence than homogeneous modeling when the explanatory variables were included. The study demonstrated strong evidence for most models used that the inclusion of jumps improved the adjustment based on RMSE for the daily interest curve. Subsequently, QMLE was estimated in a conventional way of a jump-diffusion process without the jump definition initially constructed. The study sought to compare the results of the two approaches to jumps and the results were similar in what was considered jumps, although the number of such events was lower. Also, for this estimation, no major conclusions were obtained in comparison with the estimation by QMLE and Bayesian made initially.Biblioteca Digitais de Teses e Dissertações da USPLaurini, Marcio PolettiAmaral, João Pedro Nascimento do2020-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2020-11-19T16:59:02Zoai:teses.usp.br:tde-19082020-162218Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-11-19T16:59:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Modelagem de salto-difusão para a taxa DI: duas abordagens Jump-Difusion model to DI interest rate: two approaches |
title |
Modelagem de salto-difusão para a taxa DI: duas abordagens |
spellingShingle |
Modelagem de salto-difusão para a taxa DI: duas abordagens Amaral, João Pedro Nascimento do Diffusion Difusão Jump Saltos SDE SDE |
title_short |
Modelagem de salto-difusão para a taxa DI: duas abordagens |
title_full |
Modelagem de salto-difusão para a taxa DI: duas abordagens |
title_fullStr |
Modelagem de salto-difusão para a taxa DI: duas abordagens |
title_full_unstemmed |
Modelagem de salto-difusão para a taxa DI: duas abordagens |
title_sort |
Modelagem de salto-difusão para a taxa DI: duas abordagens |
author |
Amaral, João Pedro Nascimento do |
author_facet |
Amaral, João Pedro Nascimento do |
author_role |
author |
dc.contributor.none.fl_str_mv |
Laurini, Marcio Poletti |
dc.contributor.author.fl_str_mv |
Amaral, João Pedro Nascimento do |
dc.subject.por.fl_str_mv |
Diffusion Difusão Jump Saltos SDE SDE |
topic |
Diffusion Difusão Jump Saltos SDE SDE |
description |
O presente trabalho busca primeiramente modelar a curva de juros diária (DI) através de vários modelos de equações diferenciais estocásticas estimando-as através de dois métodos de estimação. O primeiro através da estimação usando o método de quasi-máxima verossimilhança (QMLE) e o segundo usando a estimação Bayesiana. Inicialmente o objetivo foi o de comparar as duas formas por meio das propriedades estatísticas, calculadas através da simulação e discretização de Euler - Maruyama, dos coeficientes das equações que são dadas pelo viés, MAE, ME e RMSE. Posterior a isso foram feitas trajetórias para comparação dentro da amostra e obtenção do RMSE da curva. Visto que em ambas as estimações os resultados apresentaram RMSE e viés considerável nos coeficientes, foi incluída a presença de saltos nos modelos para verificação de melhora na aderência dos modelos. O intuito, inicialmente, foi modelar a distribuição de saltos, partindo da hipótese de que os quantis mais extremos da primeira diferença da curva DI seriam saltos. Estes quantis apresentaram fortes evidências da distribuição para valores extremos (GEV). Posteriormente foi constatado que os saltos nos tempos de chegada seguindo uma distribuição de Poisson não-homogênea, traziam mais fortes evidências do que a modelagem homogênea quando incluídas as variáveis explicativas abordadas. O estudo demonstrou fortes evidências para a maioria dos modelos usados que a inclusão de saltos melhorou o ajuste baseado no RMSE para a curva de juros diária. Posteriormente a isso, foi feita a estimação por QMLE de forma convencional de um processo de salto-difusão sem a definição de saltos construída inicialmente. O estudo buscou comparar os resultados das duas abordagens de saltos e os resultados se mostraram parecidos no que foi considerado saltos, embora o número de tais eventos tenha sido menor. E também para esta estimação não foram obtidas grandes conclusões na comparação com a estimação por QMLE e Bayesiana feitas inicialmente. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/ |
url |
https://www.teses.usp.br/teses/disponiveis/96/96131/tde-19082020-162218/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257176564826112 |