Utilização de redes neurais na determinação de modelos geoidais

Detalhes bibliográficos
Autor(a) principal: Maia, Túle Cesar Barcelos
Data de Publicação: 2003
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/18/18137/tde-19122003-185113/
Resumo: A partir de dados obtidos do modelo do geopotencial EGM96, da gravimetria, do GPS e do nivelamento geométrico, e aplicando harmônicos esféricos e FFT como técnicas de determinação geoidal, foram utilizadas neste trabalho redes neurais artificiais como ferramenta alternativa na determinação de um modelo geoidal. Procurou-se uma determinação geoidal de forma mais rápida, com precisão adequada e com menor esforço na determinação de parâmetros importantes na obtenção da referida superfície. Foram utilizados modelos de redes neurais do tipo MLP, algoritmo de treinamento backpropagation, variando o número de camadas, o número de neurônios, a função de ativação, a taxa de aprendizado e o termo momento. Os dados dos modelos mencionados foram tratados de forma a serem utilizados pelos modelos de redes neurais. Foram executadas a normalização, a análise de componentes principais e a definição dos atributos de entrada e saída para treinamento do modelo de rede neural. Foram Realizadas comparações entre os modelos geoidais existentes, os quais foram utilizados nesta pesquisa, com os resultados obtidos pelo modelo de rede neural. Tais comparações resultaram na obtenção dos erros entre as superfícies, justificando dessa forma a possibilidade de uso do referido método, com a conseqüente demonstração de suas vantagens e desvantagens.
id USP_2b8c2d1a1bc1f2dc10098f82dd881107
oai_identifier_str oai:teses.usp.br:tde-19122003-185113
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Utilização de redes neurais na determinação de modelos geoidais Using artificial neural network to obtain geoid models.FFTFFTgeoidgeoidal ondulationgeóidegeopotencial modelGPS networkgravimetriagravimetry neural networksmodelo geopotencialondulaçõa geoidalPCAPCAredes GPSredes neuraisA partir de dados obtidos do modelo do geopotencial EGM96, da gravimetria, do GPS e do nivelamento geométrico, e aplicando harmônicos esféricos e FFT como técnicas de determinação geoidal, foram utilizadas neste trabalho redes neurais artificiais como ferramenta alternativa na determinação de um modelo geoidal. Procurou-se uma determinação geoidal de forma mais rápida, com precisão adequada e com menor esforço na determinação de parâmetros importantes na obtenção da referida superfície. Foram utilizados modelos de redes neurais do tipo MLP, algoritmo de treinamento backpropagation, variando o número de camadas, o número de neurônios, a função de ativação, a taxa de aprendizado e o termo momento. Os dados dos modelos mencionados foram tratados de forma a serem utilizados pelos modelos de redes neurais. Foram executadas a normalização, a análise de componentes principais e a definição dos atributos de entrada e saída para treinamento do modelo de rede neural. Foram Realizadas comparações entre os modelos geoidais existentes, os quais foram utilizados nesta pesquisa, com os resultados obtidos pelo modelo de rede neural. Tais comparações resultaram na obtenção dos erros entre as superfícies, justificando dessa forma a possibilidade de uso do referido método, com a conseqüente demonstração de suas vantagens e desvantagens.Applying data from EGM96 geopotential model, gravimetric, GPS and geometric leveling data and using spherical harmonics and FFT as techniques of geoidal determination, this thesis has the goal to find a fast alternative tool to define a geoidal undulation model considering precision and a small effort to estimate important parameters to obtain the mentioned model. MLP neural networks, backpropagation algorithm changing the numbers of layers, neurons numbers, activation function, learning rate and momentum term have been applied. The data of the mentioned models were handling aiming to be used by the neural networks models. Normalization, analysis of the main components, definition of the input and output attributes to training the neural network model, have been also used. Comparison among existing models and the models used in this research with results obtained by the neural network have been done, showing the errors between the created surfaces. At the end, it is presented a positive argument to use the MLP neural network to generate a geoidal model with advantages and disadvantages.Biblioteca Digitais de Teses e Dissertações da USPRomero, Roseli Aparecida FrancelinSegantine, Paulo Cesar LimaMaia, Túle Cesar Barcelos2003-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18137/tde-19122003-185113/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:49Zoai:teses.usp.br:tde-19122003-185113Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Utilização de redes neurais na determinação de modelos geoidais
Using artificial neural network to obtain geoid models.
title Utilização de redes neurais na determinação de modelos geoidais
spellingShingle Utilização de redes neurais na determinação de modelos geoidais
Maia, Túle Cesar Barcelos
FFT
FFT
geoid
geoidal ondulation
geóide
geopotencial model
GPS network
gravimetria
gravimetry neural networks
modelo geopotencial
ondulaçõa geoidal
PCA
PCA
redes GPS
redes neurais
title_short Utilização de redes neurais na determinação de modelos geoidais
title_full Utilização de redes neurais na determinação de modelos geoidais
title_fullStr Utilização de redes neurais na determinação de modelos geoidais
title_full_unstemmed Utilização de redes neurais na determinação de modelos geoidais
title_sort Utilização de redes neurais na determinação de modelos geoidais
author Maia, Túle Cesar Barcelos
author_facet Maia, Túle Cesar Barcelos
author_role author
dc.contributor.none.fl_str_mv Romero, Roseli Aparecida Francelin
Segantine, Paulo Cesar Lima
dc.contributor.author.fl_str_mv Maia, Túle Cesar Barcelos
dc.subject.por.fl_str_mv FFT
FFT
geoid
geoidal ondulation
geóide
geopotencial model
GPS network
gravimetria
gravimetry neural networks
modelo geopotencial
ondulaçõa geoidal
PCA
PCA
redes GPS
redes neurais
topic FFT
FFT
geoid
geoidal ondulation
geóide
geopotencial model
GPS network
gravimetria
gravimetry neural networks
modelo geopotencial
ondulaçõa geoidal
PCA
PCA
redes GPS
redes neurais
description A partir de dados obtidos do modelo do geopotencial EGM96, da gravimetria, do GPS e do nivelamento geométrico, e aplicando harmônicos esféricos e FFT como técnicas de determinação geoidal, foram utilizadas neste trabalho redes neurais artificiais como ferramenta alternativa na determinação de um modelo geoidal. Procurou-se uma determinação geoidal de forma mais rápida, com precisão adequada e com menor esforço na determinação de parâmetros importantes na obtenção da referida superfície. Foram utilizados modelos de redes neurais do tipo MLP, algoritmo de treinamento backpropagation, variando o número de camadas, o número de neurônios, a função de ativação, a taxa de aprendizado e o termo momento. Os dados dos modelos mencionados foram tratados de forma a serem utilizados pelos modelos de redes neurais. Foram executadas a normalização, a análise de componentes principais e a definição dos atributos de entrada e saída para treinamento do modelo de rede neural. Foram Realizadas comparações entre os modelos geoidais existentes, os quais foram utilizados nesta pesquisa, com os resultados obtidos pelo modelo de rede neural. Tais comparações resultaram na obtenção dos erros entre as superfícies, justificando dessa forma a possibilidade de uso do referido método, com a conseqüente demonstração de suas vantagens e desvantagens.
publishDate 2003
dc.date.none.fl_str_mv 2003-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18137/tde-19122003-185113/
url http://www.teses.usp.br/teses/disponiveis/18/18137/tde-19122003-185113/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090875743010816