Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados

Detalhes bibliográficos
Autor(a) principal: Lordelo, Mauricio Santana
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08072014-084724/
Resumo: Os modelos de transição de Markov constituem uma ferramenta de grande importância para diversas áreas do conhecimento quando são desenvolvidos estudos com medidas repetidas. Eles caracterizam-se por modelar a variável resposta ao longo do tempo condicionada a uma ou mais respostas anteriores, conhecidas como a história do processo. Além disso, é possível a inclusão de outras covariáveis. No caso das respostas binárias, pode-se construir uma matriz com as probabilidades de transição de um estado para outro. Neste trabalho, quatro abordagens diferentes de modelos de transição foram comparadas para avaliar qual estima melhor o efeito causal de tratamentos em um estudo experimental em que a variável resposta é um vetor binário medido ao longo do tempo. Estudos de simulação foram realizados levando em consideração experimentos balanceados com três tratamentos de natureza categórica. Para avaliar as estimativas foram utilizados o erro padrão, viés e percentual de cobertura dos intervalos de confiança. Os resultados mostraram que os modelos de transição marginalizados são mais indicados na situação em que um experimento é desenvolvido com um reduzido número de medidas repetidas. Como complementação, apresenta-se uma forma alternativa de realizar comparações múltiplas, uma vez que os pressupostos como normalidade, independência e homocedasticidade são violados impossibilitando o uso dos métodos tradicionais. Um experimento com dados reais no qual se registrou a presença de fungos (considerada como sucesso) em cultivos de citros e morango foi analisado por meio do modelo de transição apropriado. Para as comparações múltiplas, intervalos de confiança simultâneos foram construídos para o preditor linear e os resultados foram estendidos para a resposta média que neste caso são as probabilidades de sucesso.
id USP_3014fa6ff2bb2d314d839be76dae6eda
oai_identifier_str oai:teses.usp.br:tde-08072014-084724
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionadosMarkov transition models: a focus on planned experiments with correlated binary dataCausal treatment effectEfeito causal de tratamentoMedidas repetidasprobabilidades de transiçãoRepeated measuresTransition probabilitiesOs modelos de transição de Markov constituem uma ferramenta de grande importância para diversas áreas do conhecimento quando são desenvolvidos estudos com medidas repetidas. Eles caracterizam-se por modelar a variável resposta ao longo do tempo condicionada a uma ou mais respostas anteriores, conhecidas como a história do processo. Além disso, é possível a inclusão de outras covariáveis. No caso das respostas binárias, pode-se construir uma matriz com as probabilidades de transição de um estado para outro. Neste trabalho, quatro abordagens diferentes de modelos de transição foram comparadas para avaliar qual estima melhor o efeito causal de tratamentos em um estudo experimental em que a variável resposta é um vetor binário medido ao longo do tempo. Estudos de simulação foram realizados levando em consideração experimentos balanceados com três tratamentos de natureza categórica. Para avaliar as estimativas foram utilizados o erro padrão, viés e percentual de cobertura dos intervalos de confiança. Os resultados mostraram que os modelos de transição marginalizados são mais indicados na situação em que um experimento é desenvolvido com um reduzido número de medidas repetidas. Como complementação, apresenta-se uma forma alternativa de realizar comparações múltiplas, uma vez que os pressupostos como normalidade, independência e homocedasticidade são violados impossibilitando o uso dos métodos tradicionais. Um experimento com dados reais no qual se registrou a presença de fungos (considerada como sucesso) em cultivos de citros e morango foi analisado por meio do modelo de transição apropriado. Para as comparações múltiplas, intervalos de confiança simultâneos foram construídos para o preditor linear e os resultados foram estendidos para a resposta média que neste caso são as probabilidades de sucesso.The transition Markov models are a very important tool for several areas of knowledge when studies are developed with repeated measures. They are characterized by modeling the response variable over time conditional to the previous response which is known as the history. In addtion it is possible to include other covariates. In the case of binary responses, can be constructed a matrix of transition probabilities from one state to another. In this work, four different approaches to transition models were compared in order to assess which best estimates of the causal effect of treatments in an experimental studies where the outcome is a vector of binary response measured over time. Simulation study was held taking into account a balanced experiments with three treatments of categorical nature. To assess the best estimates standard error and bias, beyond the percentage of coverage were used. The results showed that the marginalized transition models are more appropriate in situation where an experiment is developed with a reduced number of repeated measurements. As complementation is presented an alternative way to perform multiple comparisons, since the assumptions as normality, independence and homoscedasticity are violated precluding the use of traditional methods. An experiment with real data where we recorded the presence of fungi (deemed successful) in citrus and strawberry crops was analyzed through the appropriate transition model. For multiple comparisons, simultaneous confidence intervals were constructed for the linear predictor and the results have been extended to the mean response in this case are the probabilities of success.Biblioteca Digitais de Teses e Dissertações da USPPiedade, Sonia Maria de StefanoLordelo, Mauricio Santana2014-05-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-08072014-084724/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:54Zoai:teses.usp.br:tde-08072014-084724Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
Markov transition models: a focus on planned experiments with correlated binary data
title Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
spellingShingle Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
Lordelo, Mauricio Santana
Causal treatment effect
Efeito causal de tratamento
Medidas repetidas
probabilidades de transição
Repeated measures
Transition probabilities
title_short Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
title_full Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
title_fullStr Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
title_full_unstemmed Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
title_sort Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados
author Lordelo, Mauricio Santana
author_facet Lordelo, Mauricio Santana
author_role author
dc.contributor.none.fl_str_mv Piedade, Sonia Maria de Stefano
dc.contributor.author.fl_str_mv Lordelo, Mauricio Santana
dc.subject.por.fl_str_mv Causal treatment effect
Efeito causal de tratamento
Medidas repetidas
probabilidades de transição
Repeated measures
Transition probabilities
topic Causal treatment effect
Efeito causal de tratamento
Medidas repetidas
probabilidades de transição
Repeated measures
Transition probabilities
description Os modelos de transição de Markov constituem uma ferramenta de grande importância para diversas áreas do conhecimento quando são desenvolvidos estudos com medidas repetidas. Eles caracterizam-se por modelar a variável resposta ao longo do tempo condicionada a uma ou mais respostas anteriores, conhecidas como a história do processo. Além disso, é possível a inclusão de outras covariáveis. No caso das respostas binárias, pode-se construir uma matriz com as probabilidades de transição de um estado para outro. Neste trabalho, quatro abordagens diferentes de modelos de transição foram comparadas para avaliar qual estima melhor o efeito causal de tratamentos em um estudo experimental em que a variável resposta é um vetor binário medido ao longo do tempo. Estudos de simulação foram realizados levando em consideração experimentos balanceados com três tratamentos de natureza categórica. Para avaliar as estimativas foram utilizados o erro padrão, viés e percentual de cobertura dos intervalos de confiança. Os resultados mostraram que os modelos de transição marginalizados são mais indicados na situação em que um experimento é desenvolvido com um reduzido número de medidas repetidas. Como complementação, apresenta-se uma forma alternativa de realizar comparações múltiplas, uma vez que os pressupostos como normalidade, independência e homocedasticidade são violados impossibilitando o uso dos métodos tradicionais. Um experimento com dados reais no qual se registrou a presença de fungos (considerada como sucesso) em cultivos de citros e morango foi analisado por meio do modelo de transição apropriado. Para as comparações múltiplas, intervalos de confiança simultâneos foram construídos para o preditor linear e os resultados foram estendidos para a resposta média que neste caso são as probabilidades de sucesso.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08072014-084724/
url http://www.teses.usp.br/teses/disponiveis/11/11134/tde-08072014-084724/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090515971342336