Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092020-180529/ |
Resumo: | This thesis proposes new methods for the numerical solution of two-phase flows in high-contrast porous media typical of petroleum reservoirs. An operator splitting strategy is used, where the saturation of one of the phases and the velocity field are updated sequentially. We focus on approximating the velocity field by multiscale methods, which allow for the global solution to be computed on coarse meshes (large scale), while detailed basis functions are defined locally (usually in parallel) in a much finer grid (small scale). The methods developed here are based on the Multiscale Robin Coupled Method (MRCM), a domain decomposition method that generalizes other well-established multiscale mixed methods and adds great flexibility to the choice of interface spaces as well as in the boundary conditions for coupling of local solutions. We find that the coupling of nearest neighbor subdomains through the imposition of a continuous pressure (respectively, normal fluxes) is the best strategy in terms of accuracy to approximate two-phase flows in the presence of high (resp., low) permeability channels (resp., regions). Thus, we introduce a new adaptivity strategy for setting the Robin algorithmic parameter of the MRCM, that controls the relative importance of Dirichlet and Neumann boundary conditions in the coupling of subdomains. The new strategy presents accurate approximations in challenging, high-contrast permeability fields. Then, it is used to improve the accuracy of the MRCM by considering alternative choices for the interface spaces other than the classical polynomials since they are not optimal for high-contrast features such as high permeability channels and barriers (low permeability). We introduce new interface spaces, which are based on physics, to deal with permeability fields in the simultaneous presence of high permeability channels and barriers, accommodated respectively, by the pressure and flux spaces. We show that the proposed interface spaces produce solutions significantly more accurate than polynomial spaces for problems with high-contrast permeability coefficients. We investigate different techniques to enhance the approximation of two-phase flows in terms of computational efficiency. We formulate a new procedure, the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), to speed-up the solution of two-phase flows. A modified operator splitting method is presented, where we replace full updates of local solutions by reusing basis functions computed by the MRCM at an earlier time of the simulation. We show that the MPM-2P reduces drastically the computational cost of two-phase flow simulations, without loss of accuracy. The MRCM is also investigated in a sequential implicit scheme for two-phase flows, that allows for the use of arbitrarily large time steps when compared to explicit time integration methods, improving the efficiency of the simulation. We show that the MRCM produces accurate and robust approximations when combined with different hyperbolic solvers, including implicit techniques. Our numerical simulations of two-phase flows with the MRCM present an unprecedented accuracy for realistic problems when compared to some standard multiscale methods. Moreover, the MRCM can take advantage of state-of-the-art supercomputers to efficiently simulate two-phase flows in high-contrast porous media. |
id |
USP_3361f3d24137535a002bdfeeacc8a626 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14092020-180529 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous mediaMétodos mistos multiescala aprimorados para escoamentos bifásicos em meios porosos de alto contraste.Escoamentos bifásicosHigh-contrast porous mediaMeios porosos de alto contrasteMétodos mistos multiescalaMultiscale mixed methodsMultiscale Robin coupled methodMultiscale Robin coupled methodReservoir simulationSimulação de reservatórios.Two-phase flowsThis thesis proposes new methods for the numerical solution of two-phase flows in high-contrast porous media typical of petroleum reservoirs. An operator splitting strategy is used, where the saturation of one of the phases and the velocity field are updated sequentially. We focus on approximating the velocity field by multiscale methods, which allow for the global solution to be computed on coarse meshes (large scale), while detailed basis functions are defined locally (usually in parallel) in a much finer grid (small scale). The methods developed here are based on the Multiscale Robin Coupled Method (MRCM), a domain decomposition method that generalizes other well-established multiscale mixed methods and adds great flexibility to the choice of interface spaces as well as in the boundary conditions for coupling of local solutions. We find that the coupling of nearest neighbor subdomains through the imposition of a continuous pressure (respectively, normal fluxes) is the best strategy in terms of accuracy to approximate two-phase flows in the presence of high (resp., low) permeability channels (resp., regions). Thus, we introduce a new adaptivity strategy for setting the Robin algorithmic parameter of the MRCM, that controls the relative importance of Dirichlet and Neumann boundary conditions in the coupling of subdomains. The new strategy presents accurate approximations in challenging, high-contrast permeability fields. Then, it is used to improve the accuracy of the MRCM by considering alternative choices for the interface spaces other than the classical polynomials since they are not optimal for high-contrast features such as high permeability channels and barriers (low permeability). We introduce new interface spaces, which are based on physics, to deal with permeability fields in the simultaneous presence of high permeability channels and barriers, accommodated respectively, by the pressure and flux spaces. We show that the proposed interface spaces produce solutions significantly more accurate than polynomial spaces for problems with high-contrast permeability coefficients. We investigate different techniques to enhance the approximation of two-phase flows in terms of computational efficiency. We formulate a new procedure, the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), to speed-up the solution of two-phase flows. A modified operator splitting method is presented, where we replace full updates of local solutions by reusing basis functions computed by the MRCM at an earlier time of the simulation. We show that the MPM-2P reduces drastically the computational cost of two-phase flow simulations, without loss of accuracy. The MRCM is also investigated in a sequential implicit scheme for two-phase flows, that allows for the use of arbitrarily large time steps when compared to explicit time integration methods, improving the efficiency of the simulation. We show that the MRCM produces accurate and robust approximations when combined with different hyperbolic solvers, including implicit techniques. Our numerical simulations of two-phase flows with the MRCM present an unprecedented accuracy for realistic problems when compared to some standard multiscale methods. Moreover, the MRCM can take advantage of state-of-the-art supercomputers to efficiently simulate two-phase flows in high-contrast porous media.Esta tese propõe novos métodos para a solução numérica de escoamentos bifásicos em meios porosos de alto contraste, típicos em reservatórios de petróleo. Utiliza-se uma técnica de segregação de operadores, onde a saturação de uma das fases e o campo de velocidades são atualizados sequencialmente. Nosso objetivo é aproximar o campo de velocidades através de métodos multiescala, permitindo que a solução global seja calculada em malhas grosseiras (escala grossa), enquanto funções de base detalhadas são definidas localmente (geralmente em paralelo) em uma malha mais fina (escala fina). Os métodos aqui desenvolvidos são baseados no Multiscale Robin Coupled Method (MRCM), um método de decomposição de domínio que generaliza outros métodos mistos multiescala da literatura e adiciona grande flexibilidade à escolha dos espaços de interface e às condições de contorno do acoplamento das soluções locais. Identificamos que o acoplamento de subdomínios através da imposição de uma pressão contínua (respectivamente, fluxos normais) é a melhor estratégia em termos de precisão para escoamentos bifásicos na presença de canais (resp., regiões) de alta (resp., baixa) permeabilidade. Assim, introduzimos uma técnica adaptativa para definir o parâmetro algorítmico de Robin do MRCM, que controla a importância relativa das condições de contorno de Dirichlet e Neumann no acoplamento dos subdomínios. A nova estratégia apresenta soluções precisas em campos de permeabilidade desafiadores. Essa técnica é então utilizada para melhorar a precisão do MRCM, considerando escolhas alternativas para os espaços de interface que não sejam os clássicos polinômios, uma vez que esses não são adequados para representar estruturas de alto contraste como canais de alta permeabilidade e barreiras (baixa permeabilidade). Introduzimos novos espaços de interface, baseados na física, para lidar com campos de permeabilidade contendo simultaneamente canais altamente permeáveis e barreiras, acomodadas respectivamente, pelos espaços de pressão e fluxo. Mostramos que os espaços de interface propostos produzem soluções significativamente mais precisas do que espaços polinomiais para problemas com coeficientes de permeabilidade de alto contraste. Diferentes técnicas para aprimorar a solução de escoamentos bifásicos em termos de eficiência computacional são estudadas. Formulamos o Multiscale Perturbation Method for Two-Phase Flows (MPM-2P) para acelerar a solução de escoamentos bifásicos. Neste contexto, apresentamos um método de segregação de operadores modificado, onde reutilizamos funções de base calculadas pelo MRCM em um tempo anterior da simulação ao invés de calcular atualizações completas das soluções locais. Mostramos que o MPM-2P reduz drasticamente o custo computacional das simulações de escoamentos bifásicos, sem apresentar perdas de precisão. O MRCM também foi estudado em um esquema sequencial implícito para escoamentos bifásicos, que possibilita passos de tempo arbitrariamente grandes quando comparado à métodos explícitos no tempo, melhorando a eficiência da simulação. Mostramos que o MRCM produz aproximações precisas e robustas quando combinado com diferentes esquemas para leis de conservação hiperbólicas, incluindo técnicas implícitas. Nossas simulações de escoamentos bifásicos mostram que o MRCM apresenta uma precisão sem precedentes para problemas realistas quando comparado com alguns métodos multiescala da literatura. Além disso, o MRCM pode tirar proveito de supercomputadores de última geração para simular eficientemente escoamentos bifásicos em meios porosos de alto contraste.Biblioteca Digitais de Teses e Dissertações da USPPereira, Luis Felipe FeresSousa, Fabrício Simeoni deRocha, Franciane Fracalossi2020-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092020-180529/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-09-15T00:15:02Zoai:teses.usp.br:tde-14092020-180529Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-09-15T00:15:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media Métodos mistos multiescala aprimorados para escoamentos bifásicos em meios porosos de alto contraste. |
title |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media |
spellingShingle |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media Rocha, Franciane Fracalossi Escoamentos bifásicos High-contrast porous media Meios porosos de alto contraste Métodos mistos multiescala Multiscale mixed methods Multiscale Robin coupled method Multiscale Robin coupled method Reservoir simulation Simulação de reservatórios. Two-phase flows |
title_short |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media |
title_full |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media |
title_fullStr |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media |
title_full_unstemmed |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media |
title_sort |
Enhanced multiscale mixed methods for two-phase flows in high-contrast porous media |
author |
Rocha, Franciane Fracalossi |
author_facet |
Rocha, Franciane Fracalossi |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Luis Felipe Feres Sousa, Fabrício Simeoni de |
dc.contributor.author.fl_str_mv |
Rocha, Franciane Fracalossi |
dc.subject.por.fl_str_mv |
Escoamentos bifásicos High-contrast porous media Meios porosos de alto contraste Métodos mistos multiescala Multiscale mixed methods Multiscale Robin coupled method Multiscale Robin coupled method Reservoir simulation Simulação de reservatórios. Two-phase flows |
topic |
Escoamentos bifásicos High-contrast porous media Meios porosos de alto contraste Métodos mistos multiescala Multiscale mixed methods Multiscale Robin coupled method Multiscale Robin coupled method Reservoir simulation Simulação de reservatórios. Two-phase flows |
description |
This thesis proposes new methods for the numerical solution of two-phase flows in high-contrast porous media typical of petroleum reservoirs. An operator splitting strategy is used, where the saturation of one of the phases and the velocity field are updated sequentially. We focus on approximating the velocity field by multiscale methods, which allow for the global solution to be computed on coarse meshes (large scale), while detailed basis functions are defined locally (usually in parallel) in a much finer grid (small scale). The methods developed here are based on the Multiscale Robin Coupled Method (MRCM), a domain decomposition method that generalizes other well-established multiscale mixed methods and adds great flexibility to the choice of interface spaces as well as in the boundary conditions for coupling of local solutions. We find that the coupling of nearest neighbor subdomains through the imposition of a continuous pressure (respectively, normal fluxes) is the best strategy in terms of accuracy to approximate two-phase flows in the presence of high (resp., low) permeability channels (resp., regions). Thus, we introduce a new adaptivity strategy for setting the Robin algorithmic parameter of the MRCM, that controls the relative importance of Dirichlet and Neumann boundary conditions in the coupling of subdomains. The new strategy presents accurate approximations in challenging, high-contrast permeability fields. Then, it is used to improve the accuracy of the MRCM by considering alternative choices for the interface spaces other than the classical polynomials since they are not optimal for high-contrast features such as high permeability channels and barriers (low permeability). We introduce new interface spaces, which are based on physics, to deal with permeability fields in the simultaneous presence of high permeability channels and barriers, accommodated respectively, by the pressure and flux spaces. We show that the proposed interface spaces produce solutions significantly more accurate than polynomial spaces for problems with high-contrast permeability coefficients. We investigate different techniques to enhance the approximation of two-phase flows in terms of computational efficiency. We formulate a new procedure, the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), to speed-up the solution of two-phase flows. A modified operator splitting method is presented, where we replace full updates of local solutions by reusing basis functions computed by the MRCM at an earlier time of the simulation. We show that the MPM-2P reduces drastically the computational cost of two-phase flow simulations, without loss of accuracy. The MRCM is also investigated in a sequential implicit scheme for two-phase flows, that allows for the use of arbitrarily large time steps when compared to explicit time integration methods, improving the efficiency of the simulation. We show that the MRCM produces accurate and robust approximations when combined with different hyperbolic solvers, including implicit techniques. Our numerical simulations of two-phase flows with the MRCM present an unprecedented accuracy for realistic problems when compared to some standard multiscale methods. Moreover, the MRCM can take advantage of state-of-the-art supercomputers to efficiently simulate two-phase flows in high-contrast porous media. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092020-180529/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-14092020-180529/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256972512985088 |