Multiscale methods for oil reservoir simulation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-141714/ |
Resumo: | In this thesis a multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed, the Multiscale Robin Coupled Method (MRCM). The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The method allows for the independent definition of interface spaces for pressure and flux over the skeleton of the decomposition that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. Numerical simulations are presented aiming at illustrating several features of the new method. We illustrate the possibility to recover the multiscale solution of two wellknown methods of the literature, namely, the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method by suitable choices of the parameter b in the Robin interface conditions. Results show that the accuracy of the MRCM depends on the choice of this algorithmic parameter as well as on the choice of the interface spaces. An extensive numerical assessment of the MRCM is conduct with two types of interface spaces, the usual piecewise polynomial spaces and the informed spaces, the latter obtained from sets of snapshots by dimensionality reduction. Different distributions of the unknowns between pressure and flux are explored. The results show that b, suitably nondimensionalized, can be fixed to unity to avoid any indeterminacy in the method. Further, with both types of spaces, it is observed that a balanced distribution of the interface unknowns between pressure and flux renders the MRCM quite attractive both in accuracy and in computational cost, competitive with other multiscale methods from the literature. The MRCM solutions are in general only global conservative. Two postprocessing procedures are proposed to recover local conservation of the multiscale velocity fields. We investigate the applicability of such methods in highly heterogeneous permeability fields in modeling the contaminant transport in the subsurface. These methods are compared to a standard procedure. Results indicate that the proposed methods have the potential to produce more accurate results than the standard method with similar or reduced computational cost. |
id |
USP_d5a4cb20eb84643045c4a8c2446fcc10 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-29042019-141714 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Multiscale methods for oil reservoir simulationMétodo multiescala para simulações de reservatórios de petróleoAproximações multiescalaCondições de fronteira de RobinDarcy FlowEscoamento de DarcyMeios porososMultiscale approximationPorous mediaReservoir simulationRobin boundary conditionsSimulação de reservatóriosIn this thesis a multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed, the Multiscale Robin Coupled Method (MRCM). The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The method allows for the independent definition of interface spaces for pressure and flux over the skeleton of the decomposition that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. Numerical simulations are presented aiming at illustrating several features of the new method. We illustrate the possibility to recover the multiscale solution of two wellknown methods of the literature, namely, the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method by suitable choices of the parameter b in the Robin interface conditions. Results show that the accuracy of the MRCM depends on the choice of this algorithmic parameter as well as on the choice of the interface spaces. An extensive numerical assessment of the MRCM is conduct with two types of interface spaces, the usual piecewise polynomial spaces and the informed spaces, the latter obtained from sets of snapshots by dimensionality reduction. Different distributions of the unknowns between pressure and flux are explored. The results show that b, suitably nondimensionalized, can be fixed to unity to avoid any indeterminacy in the method. Further, with both types of spaces, it is observed that a balanced distribution of the interface unknowns between pressure and flux renders the MRCM quite attractive both in accuracy and in computational cost, competitive with other multiscale methods from the literature. The MRCM solutions are in general only global conservative. Two postprocessing procedures are proposed to recover local conservation of the multiscale velocity fields. We investigate the applicability of such methods in highly heterogeneous permeability fields in modeling the contaminant transport in the subsurface. These methods are compared to a standard procedure. Results indicate that the proposed methods have the potential to produce more accurate results than the standard method with similar or reduced computational cost.Nesta tese é proposto um método misto multiescala visando a aproximação precisa de campos de velocidade e pressão em meios porosos altamente heterogêneos, o método Multiscale Robin Coupled Method (MRCM). Este procedimento é baseado em um novo método de decomposição de domínio no qual os problemas locais são definidos com condições de contorno de Robin. O método permite a definição independente de espaços de interface para pressão e fluxo sobre o esqueleto da decomposição que pode ser escolhida com grande flexibilidade para acomodar características locais dos campos de permeabilidade subjacentes. Simulações numéricas são apresentadas visando ilustrar várias características do novo método. Ilustramos a possibilidade de recuperar a solução multiescala de dois métodos bem conhecidos da literatura, a saber, o Multiscale Mortar Mixed Finite Element Method (MMMFEM) e o Multiscale Hybrid-Mixed (MHM) Finite Element Method por escolhas adequadas do parâmetro b nas condições da interface de Robin. Os resultados mostram que a precisão do MRCM depende da escolha deste parâmetro algorítmico, bem como da escolha dos espaços de interface. Uma extensa avaliação numérica do MRCM é conduzida com dois tipos de espaços de interface, os usuais espaços polinomiais por partes e os espaços informados, este último obtidos a partir da redução de dimensionalidade de conjutos de espaços de snapshots. Diferentes distribuições de incógnitas entre pressão e fluxo são exploradas. Os resultados mostram que b, adequadamente adimensionalizado, pode ser fixado em unidade para evitar qualquer indeterminação no método. Além disso, com ambos os tipos de espaços, observa-se que uma distribuição equilibrada de incógnita entre pressão e fluxo nas interfaces torna o MRCM bastante atraente tanto em precisão quanto em custo computacional, competitivo com outros métodos multiescala da literatura. As soluções MRCM são, em geral, apenas globalmente conservativas. Dois procedimentos de pós-processamento são propostos para recuperar a conservação local dos campos de velocidade multiescala. Investigamos a aplicabilidade de tais métodos em campos de permeabilidade altamente heterogêneos na modelagem do transporte de contaminantes na subsuperfície. Esses métodos são comparados a um procedimento padrão da literatura. Os resultados indicam que os métodos propostos têm o potencial de produzir resultados mais precisos do que o método padrão com custo computacional similar ou reduzido.Biblioteca Digitais de Teses e Dissertações da USPAusas, Roberto FedericoGuiraldello, Rafael Trevisanuto2019-03-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-141714/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-06-07T17:53:02Zoai:teses.usp.br:tde-29042019-141714Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:53:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Multiscale methods for oil reservoir simulation Método multiescala para simulações de reservatórios de petróleo |
title |
Multiscale methods for oil reservoir simulation |
spellingShingle |
Multiscale methods for oil reservoir simulation Guiraldello, Rafael Trevisanuto Aproximações multiescala Condições de fronteira de Robin Darcy Flow Escoamento de Darcy Meios porosos Multiscale approximation Porous media Reservoir simulation Robin boundary conditions Simulação de reservatórios |
title_short |
Multiscale methods for oil reservoir simulation |
title_full |
Multiscale methods for oil reservoir simulation |
title_fullStr |
Multiscale methods for oil reservoir simulation |
title_full_unstemmed |
Multiscale methods for oil reservoir simulation |
title_sort |
Multiscale methods for oil reservoir simulation |
author |
Guiraldello, Rafael Trevisanuto |
author_facet |
Guiraldello, Rafael Trevisanuto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ausas, Roberto Federico |
dc.contributor.author.fl_str_mv |
Guiraldello, Rafael Trevisanuto |
dc.subject.por.fl_str_mv |
Aproximações multiescala Condições de fronteira de Robin Darcy Flow Escoamento de Darcy Meios porosos Multiscale approximation Porous media Reservoir simulation Robin boundary conditions Simulação de reservatórios |
topic |
Aproximações multiescala Condições de fronteira de Robin Darcy Flow Escoamento de Darcy Meios porosos Multiscale approximation Porous media Reservoir simulation Robin boundary conditions Simulação de reservatórios |
description |
In this thesis a multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed, the Multiscale Robin Coupled Method (MRCM). The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The method allows for the independent definition of interface spaces for pressure and flux over the skeleton of the decomposition that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. Numerical simulations are presented aiming at illustrating several features of the new method. We illustrate the possibility to recover the multiscale solution of two wellknown methods of the literature, namely, the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method by suitable choices of the parameter b in the Robin interface conditions. Results show that the accuracy of the MRCM depends on the choice of this algorithmic parameter as well as on the choice of the interface spaces. An extensive numerical assessment of the MRCM is conduct with two types of interface spaces, the usual piecewise polynomial spaces and the informed spaces, the latter obtained from sets of snapshots by dimensionality reduction. Different distributions of the unknowns between pressure and flux are explored. The results show that b, suitably nondimensionalized, can be fixed to unity to avoid any indeterminacy in the method. Further, with both types of spaces, it is observed that a balanced distribution of the interface unknowns between pressure and flux renders the MRCM quite attractive both in accuracy and in computational cost, competitive with other multiscale methods from the literature. The MRCM solutions are in general only global conservative. Two postprocessing procedures are proposed to recover local conservation of the multiscale velocity fields. We investigate the applicability of such methods in highly heterogeneous permeability fields in modeling the contaminant transport in the subsurface. These methods are compared to a standard procedure. Results indicate that the proposed methods have the potential to produce more accurate results than the standard method with similar or reduced computational cost. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-141714/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29042019-141714/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257442692366336 |