Análise bayesiana de sensibilidade sob distribuições a priori assimétricas

Detalhes bibliográficos
Autor(a) principal: Godoi, Luciana Graziela de
Data de Publicação: 2011
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125841/
Resumo: Neste trabalho, desenvolvemos uma análise de sensibilidade global para medir a robustez de estimadores bayesianos, com respeito a uma classe de distribuições a priori gerada à partir de modos de contaminação multiplicativo de uma distribuição a priori base, com estrutura similar ao considerado por van der Linde (2007). A esta classe denominamos classe de contaminação multiplicativa (\0413 M) e mostramos que, para particulares especificações, esta contém famílias de distribuições assimétricas conhecidas na literatura. Aqui, exploramos a classe de contaminação multiplicativa normal-assimétrica em vários contextos, a saber: como distribuição a priori do parâmetro de posição de um modelo normal, com variância conhecida e desconhecida, e como distribuição a priori do parâmetro regressor de um modelo linear normal, com a variância dos erros conhecida e desconhecida. Resultados de conjugação e expressões para medidas de distância entre as médias (variâncias) a posteriori fornecidas por \0413 M e a média (variância) a posteriori resultante da distribuição a priori base são apresentados. Através de um estudo de simulação, analisamos o comportamento das médias e das variâncias a posteriori, quando o modelo normal com variância desconhecida é considerado. Para o modelo de regressão, analisamos um conjunto de dados reais, fazendo uso da teoria desenvolvida. Por fim, mudamos o enfoque da análise de sensibilidade bayesiana, ao estudar a influência da classe de contaminação a priori normal-assimétrica sobre a distribuição a posteriori como um todo, comparando espaços de probabilidade a posteriori via função de concentração
id USP_395861ca7ed84937cac6b27ef127fe41
oai_identifier_str oai:teses.usp.br:tde-20220712-125841
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise bayesiana de sensibilidade sob distribuições a priori assimétricasnot availableInferência EstatísticaNeste trabalho, desenvolvemos uma análise de sensibilidade global para medir a robustez de estimadores bayesianos, com respeito a uma classe de distribuições a priori gerada à partir de modos de contaminação multiplicativo de uma distribuição a priori base, com estrutura similar ao considerado por van der Linde (2007). A esta classe denominamos classe de contaminação multiplicativa (\0413 M) e mostramos que, para particulares especificações, esta contém famílias de distribuições assimétricas conhecidas na literatura. Aqui, exploramos a classe de contaminação multiplicativa normal-assimétrica em vários contextos, a saber: como distribuição a priori do parâmetro de posição de um modelo normal, com variância conhecida e desconhecida, e como distribuição a priori do parâmetro regressor de um modelo linear normal, com a variância dos erros conhecida e desconhecida. Resultados de conjugação e expressões para medidas de distância entre as médias (variâncias) a posteriori fornecidas por \0413 M e a média (variância) a posteriori resultante da distribuição a priori base são apresentados. Através de um estudo de simulação, analisamos o comportamento das médias e das variâncias a posteriori, quando o modelo normal com variância desconhecida é considerado. Para o modelo de regressão, analisamos um conjunto de dados reais, fazendo uso da teoria desenvolvida. Por fim, mudamos o enfoque da análise de sensibilidade bayesiana, ao estudar a influência da classe de contaminação a priori normal-assimétrica sobre a distribuição a posteriori como um todo, comparando espaços de probabilidade a posteriori via função de concentraçãonot availableBiblioteca Digitais de Teses e Dissertações da USPBranco, Márcia D'EliaGodoi, Luciana Graziela de2011-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125841/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T16:02:03Zoai:teses.usp.br:tde-20220712-125841Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T16:02:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
not available
title Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
spellingShingle Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
Godoi, Luciana Graziela de
Inferência Estatística
title_short Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
title_full Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
title_fullStr Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
title_full_unstemmed Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
title_sort Análise bayesiana de sensibilidade sob distribuições a priori assimétricas
author Godoi, Luciana Graziela de
author_facet Godoi, Luciana Graziela de
author_role author
dc.contributor.none.fl_str_mv Branco, Márcia D'Elia
dc.contributor.author.fl_str_mv Godoi, Luciana Graziela de
dc.subject.por.fl_str_mv Inferência Estatística
topic Inferência Estatística
description Neste trabalho, desenvolvemos uma análise de sensibilidade global para medir a robustez de estimadores bayesianos, com respeito a uma classe de distribuições a priori gerada à partir de modos de contaminação multiplicativo de uma distribuição a priori base, com estrutura similar ao considerado por van der Linde (2007). A esta classe denominamos classe de contaminação multiplicativa (\0413 M) e mostramos que, para particulares especificações, esta contém famílias de distribuições assimétricas conhecidas na literatura. Aqui, exploramos a classe de contaminação multiplicativa normal-assimétrica em vários contextos, a saber: como distribuição a priori do parâmetro de posição de um modelo normal, com variância conhecida e desconhecida, e como distribuição a priori do parâmetro regressor de um modelo linear normal, com a variância dos erros conhecida e desconhecida. Resultados de conjugação e expressões para medidas de distância entre as médias (variâncias) a posteriori fornecidas por \0413 M e a média (variância) a posteriori resultante da distribuição a priori base são apresentados. Através de um estudo de simulação, analisamos o comportamento das médias e das variâncias a posteriori, quando o modelo normal com variância desconhecida é considerado. Para o modelo de regressão, analisamos um conjunto de dados reais, fazendo uso da teoria desenvolvida. Por fim, mudamos o enfoque da análise de sensibilidade bayesiana, ao estudar a influência da classe de contaminação a priori normal-assimétrica sobre a distribuição a posteriori como um todo, comparando espaços de probabilidade a posteriori via função de concentração
publishDate 2011
dc.date.none.fl_str_mv 2011-08-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125841/
url https://teses.usp.br/teses/disponiveis/45/45133/tde-20220712-125841/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256562627772416