Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.

Detalhes bibliográficos
Autor(a) principal: Kimura, Vanessa Tiemi
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3133/tde-06122017-142418/
Resumo: A engenharia tecidual visa repor, reparar ou ajudar a regenerar tecidos e órgãos danificados por meio da combinação de biomateriais, biomoléculas e células. Scaffolds de nanofibras biodegradáveis mimetizam a matriz extracelular natural fornecendo uma estrutura ideal para o crescimento celular. Blendas de policaprolactona (PCL) e gelatina são biodegradáveis e proporcionam uma combinação de boas propriedades mecânicas, do PCL, com a hidrofilicidade e caráter que promove a adesão celular, da gelatina. Neste contexto, o objetivo deste trabalho é avaliar a importância das diferentes espessuras de scaffolds eletrofiados em relação às suas propriedades principais. Quatro conjuntos de scaffolds de PCL/gelatina com diferentes espessuras foram produzidos sob as mesmas condições apenas aumentando o tempo de duração do processo de eletrofiação. Os resultados indicam que as espessuras aumentaram proporcionalmente ao tempo de eletrofiação, variando de 100 nm a 300 nm nos períodos de 1 a 3 horas, enquanto a densidade aparente e a porosidade mantiveram-se constantes. As micrografias das membranas revelaram fibras lisas com diâmetros maiores para os scaffolds de menor espessura, e fibras irregulares com diâmetros menores e regiões fundidas ou ligadas para os scaffolds de maior espessura. Além disso, o aumento da espessura melhorou a resistência mecânica e a molhabilidade dos scaffolds. A esterilização por peróxido de hidrogênio não modificou quimicamente a composição das membranas de PCL/gelatina, embora algumas amostras tenham se deformado. As membranas também apresentaram bons resultados de citotoxicidade, melhorando a viabilidade celular, apesar desses valores diminuírem minimamente para os scaffolds de maior espessura, provavelmente devido à maior quantidade de PCL. O teste de adesão não foi conclusivo e deverá ser repetido.
id USP_49f55eb11a2183fed1657150f3242768
oai_identifier_str oai:teses.usp.br:tde-06122017-142418
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.Production and characterization of electrospun polymeric-protein nanofiber scaffolds with different thicknesses.BiomaterialsElectrospinningEngenharia tecidualMateriais nanoestruturadosNanofibersScaffoldTissue engineeringA engenharia tecidual visa repor, reparar ou ajudar a regenerar tecidos e órgãos danificados por meio da combinação de biomateriais, biomoléculas e células. Scaffolds de nanofibras biodegradáveis mimetizam a matriz extracelular natural fornecendo uma estrutura ideal para o crescimento celular. Blendas de policaprolactona (PCL) e gelatina são biodegradáveis e proporcionam uma combinação de boas propriedades mecânicas, do PCL, com a hidrofilicidade e caráter que promove a adesão celular, da gelatina. Neste contexto, o objetivo deste trabalho é avaliar a importância das diferentes espessuras de scaffolds eletrofiados em relação às suas propriedades principais. Quatro conjuntos de scaffolds de PCL/gelatina com diferentes espessuras foram produzidos sob as mesmas condições apenas aumentando o tempo de duração do processo de eletrofiação. Os resultados indicam que as espessuras aumentaram proporcionalmente ao tempo de eletrofiação, variando de 100 nm a 300 nm nos períodos de 1 a 3 horas, enquanto a densidade aparente e a porosidade mantiveram-se constantes. As micrografias das membranas revelaram fibras lisas com diâmetros maiores para os scaffolds de menor espessura, e fibras irregulares com diâmetros menores e regiões fundidas ou ligadas para os scaffolds de maior espessura. Além disso, o aumento da espessura melhorou a resistência mecânica e a molhabilidade dos scaffolds. A esterilização por peróxido de hidrogênio não modificou quimicamente a composição das membranas de PCL/gelatina, embora algumas amostras tenham se deformado. As membranas também apresentaram bons resultados de citotoxicidade, melhorando a viabilidade celular, apesar desses valores diminuírem minimamente para os scaffolds de maior espessura, provavelmente devido à maior quantidade de PCL. O teste de adesão não foi conclusivo e deverá ser repetido.Tissue engineering aims to replace, repair, or helping regenerate damaged tissues and organs through the combination of biomaterials, biomolecules and cells. Biodegradable nanofibrous scaffolds mimic the natural extracellular matrix providing an ideal structure to cellular growth. Blends of polycaprolactone (PCL) and gelatin are biodegradable and provide a combination of good mechanical properties, from PCL, with the hydrophilicity and cell adhesion promoter character, from gelatin. The aim of this work was to evaluate the importance of the thickness of electrospun scaffolds on their key properties. Four sets of PCL/gelatin scaffolds with different thicknesses were produced under the same conditions by simply increasing the time length of electrospinning process. Results indicate that the thickness increases proportionally to the electrospinning time, varying from 100 nm to 300 nm in periods of 1 to 3 hours, while the apparent density and porosity remained constant. Micrographs from the nonwoven mats revealed smooth fibers with larger diameters in the thinner scaffold, and irregular fibers with smaller diameters and molten or bonded regions as the thickness increased. Furthermore, the increase of thickness improved mechanical resistance and wettability of the scaffolds. Plasma sterilization did not modify chemical composition of PCL/gelatin membranes, although some samples have been deformed. Membranes also presented good results for cytotoxicity, improving cell viability, despite these values decreased minimally to the thicker scaffolds, probably due to the higher amount of PCL. Adhesion test was not conclusive and might be repeat.Biblioteca Digitais de Teses e Dissertações da USPHui, Wang ShuKimura, Vanessa Tiemi2017-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3133/tde-06122017-142418/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T16:38:18Zoai:teses.usp.br:tde-06122017-142418Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
Production and characterization of electrospun polymeric-protein nanofiber scaffolds with different thicknesses.
title Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
spellingShingle Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
Kimura, Vanessa Tiemi
Biomaterials
Electrospinning
Engenharia tecidual
Materiais nanoestruturados
Nanofibers
Scaffold
Tissue engineering
title_short Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
title_full Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
title_fullStr Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
title_full_unstemmed Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
title_sort Produção e caracterização de scaffolds de diferentes espessuras obtidos por eletrofiação de nanofibra polimérica e proteína.
author Kimura, Vanessa Tiemi
author_facet Kimura, Vanessa Tiemi
author_role author
dc.contributor.none.fl_str_mv Hui, Wang Shu
dc.contributor.author.fl_str_mv Kimura, Vanessa Tiemi
dc.subject.por.fl_str_mv Biomaterials
Electrospinning
Engenharia tecidual
Materiais nanoestruturados
Nanofibers
Scaffold
Tissue engineering
topic Biomaterials
Electrospinning
Engenharia tecidual
Materiais nanoestruturados
Nanofibers
Scaffold
Tissue engineering
description A engenharia tecidual visa repor, reparar ou ajudar a regenerar tecidos e órgãos danificados por meio da combinação de biomateriais, biomoléculas e células. Scaffolds de nanofibras biodegradáveis mimetizam a matriz extracelular natural fornecendo uma estrutura ideal para o crescimento celular. Blendas de policaprolactona (PCL) e gelatina são biodegradáveis e proporcionam uma combinação de boas propriedades mecânicas, do PCL, com a hidrofilicidade e caráter que promove a adesão celular, da gelatina. Neste contexto, o objetivo deste trabalho é avaliar a importância das diferentes espessuras de scaffolds eletrofiados em relação às suas propriedades principais. Quatro conjuntos de scaffolds de PCL/gelatina com diferentes espessuras foram produzidos sob as mesmas condições apenas aumentando o tempo de duração do processo de eletrofiação. Os resultados indicam que as espessuras aumentaram proporcionalmente ao tempo de eletrofiação, variando de 100 nm a 300 nm nos períodos de 1 a 3 horas, enquanto a densidade aparente e a porosidade mantiveram-se constantes. As micrografias das membranas revelaram fibras lisas com diâmetros maiores para os scaffolds de menor espessura, e fibras irregulares com diâmetros menores e regiões fundidas ou ligadas para os scaffolds de maior espessura. Além disso, o aumento da espessura melhorou a resistência mecânica e a molhabilidade dos scaffolds. A esterilização por peróxido de hidrogênio não modificou quimicamente a composição das membranas de PCL/gelatina, embora algumas amostras tenham se deformado. As membranas também apresentaram bons resultados de citotoxicidade, melhorando a viabilidade celular, apesar desses valores diminuírem minimamente para os scaffolds de maior espessura, provavelmente devido à maior quantidade de PCL. O teste de adesão não foi conclusivo e deverá ser repetido.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3133/tde-06122017-142418/
url http://www.teses.usp.br/teses/disponiveis/3/3133/tde-06122017-142418/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256733853941760