Estudo do espectro Laplaciano na categorização de imagens

Detalhes bibliográficos
Autor(a) principal: Humari, Juan Herbert Chuctaya
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-04072016-091446/
Resumo: Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.
id USP_4a7fff8be84c0b0f86e875d6beb320b8
oai_identifier_str oai:teses.usp.br:tde-04072016-091446
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Estudo do espectro Laplaciano na categorização de imagensStudy of the Laplacian spectrum in the categorization of images.Análise de formaEspectro do Laplaciano.Fourier TransformImage processingLaplacian spectrum.Processamento de imagensShape analysisTeoria de grafosTeoria espectral de grafosTheory spectral graphUma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.An image includes information that needs to be organized to interpret and understand its contents. There are several computational techniques to extract the main information of images and are divided into three areas: color, texture and shape analysis. One of the main of them is shape analysis, since it describes objects getting main features based on reference points, usually border points. This dissertation proposes a shape analysis method based on the spectral properties of the Laplacian in graphs to represent images. The procedure builds G graphs based on object border points, whose connections between vertices are determined by thresholds T_l. From graphs G we obtain the adjacency matrix A and matrix degrees D, which define the Laplacian matrix L=D -A. Thus, spectral decomposition of the Laplacian matrix (eigenvalues) is investigated to describe image features. Two approaches are considered: a)Analysis of feature vector based on thresholds and histograms, it considers two parameters, classes range IC_l and threshold T_l; b) Analysis of feature vector based on multiple linear for fixed eigenvalues, which represents the second and final eigenvalue matrix L. The techniques were tested in three image datasets: synthetic (Generic), human intestinal parasites (SADPI) and plant leaves (CNShape), each of these with its own features and challenges. Afterwards to evaluate our results, we used the classification model Support Vector Machine (SVM) to evaluate our approaches, determining the percentage of separation of categories. The first approach achieved 90 % of precision with the Generic image dataset, 88 % in SADPI dataset, and 72 % in CNShape dataset. In the second approach, it obtains 97 % of precision with the Generic image dataset, 83 % for SADPI and 86 % in CNShape respectively. The results show that the classification of images from the Laplacian spectrum can categorize them satisfactorily.Biblioteca Digitais de Teses e Dissertações da USPMartinez, Alexandre SoutoHumari, Juan Herbert Chuctaya2016-05-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/59/59135/tde-04072016-091446/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-17T17:23:38Zoai:teses.usp.br:tde-04072016-091446Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T17:23:38Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Estudo do espectro Laplaciano na categorização de imagens
Study of the Laplacian spectrum in the categorization of images.
title Estudo do espectro Laplaciano na categorização de imagens
spellingShingle Estudo do espectro Laplaciano na categorização de imagens
Humari, Juan Herbert Chuctaya
Análise de forma
Espectro do Laplaciano.
Fourier Transform
Image processing
Laplacian spectrum.
Processamento de imagens
Shape analysis
Teoria de grafos
Teoria espectral de grafos
Theory spectral graph
title_short Estudo do espectro Laplaciano na categorização de imagens
title_full Estudo do espectro Laplaciano na categorização de imagens
title_fullStr Estudo do espectro Laplaciano na categorização de imagens
title_full_unstemmed Estudo do espectro Laplaciano na categorização de imagens
title_sort Estudo do espectro Laplaciano na categorização de imagens
author Humari, Juan Herbert Chuctaya
author_facet Humari, Juan Herbert Chuctaya
author_role author
dc.contributor.none.fl_str_mv Martinez, Alexandre Souto
dc.contributor.author.fl_str_mv Humari, Juan Herbert Chuctaya
dc.subject.por.fl_str_mv Análise de forma
Espectro do Laplaciano.
Fourier Transform
Image processing
Laplacian spectrum.
Processamento de imagens
Shape analysis
Teoria de grafos
Teoria espectral de grafos
Theory spectral graph
topic Análise de forma
Espectro do Laplaciano.
Fourier Transform
Image processing
Laplacian spectrum.
Processamento de imagens
Shape analysis
Teoria de grafos
Teoria espectral de grafos
Theory spectral graph
description Uma imagem engloba informação que precisa ser organizada para interpretar e compreender seu conteúdo. Existem diversas técnicas computacionais para extrair a principal informação de uma imagem e podem ser divididas em três áreas: análise de cor, textura e forma. Uma das principais delas é a análise de forma, por descrever características de objetos baseadas em seus pontos fronteira. Propomos um método de caracterização de imagens, por meio da análise de forma, baseada nas propriedades espectrais do laplaciano em grafos. O procedimento construiu grafos G baseados nos pontos fronteira do objeto, cujas conexões entre vértices são determinadas por limiares T_l. A partir dos grafos obtêm-se a matriz de adjacência A e a matriz de graus D, as quais definem a matriz Laplaciana L=D -A. A decomposição espectral da matriz Laplaciana (autovalores) é investigada para descrever características das imagens. Duas abordagens são consideradas: a) Análise do vetor característico baseado em limiares e a histogramas, considera dois parâmetros o intervalo de classes IC_l e o limiar T_l; b) Análise do vetor característico baseado em vários limiares para autovalores fixos; os quais representam o segundo e último autovalor da matriz L. As técnicas foram testada em três coleções de imagens: sintéticas (Genéricas), parasitas intestinais (SADPI) e folhas de plantas (CNShape), cada uma destas com suas próprias características e desafios. Na avaliação dos resultados, empregamos o modelo de classificação support vector machine (SVM), o qual avalia nossas abordagens, determinando o índice de separação das categorias. A primeira abordagem obteve um acerto de 90 % com a coleção de imagens Genéricas, 88 % na coleção SADPI, e 72 % na coleção CNShape. Na segunda abordagem, obtém-se uma taxa de acerto de 97 % com a coleção de imagens Genéricas; 83 % para SADPI e 86 % no CNShape. Os resultados mostram que a classificação de imagens a partir do espectro do Laplaciano, consegue categorizá-las satisfatoriamente.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/59/59135/tde-04072016-091446/
url http://www.teses.usp.br/teses/disponiveis/59/59135/tde-04072016-091446/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256663815356416