HR Analytics and the decision-making process: an evidence-based management approach

Detalhes bibliográficos
Autor(a) principal: Scaf, Amanda
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/12/12139/tde-23022023-195912/
Resumo: HR Analytics (HRA) has gained attention from practitioners and scholars under the promise of providing basis for better decision making. However, the question regarding how HRA can be effectively used to support decisions in organizations remains answered. Although some suggest Evidence-Based Management (EBM) as the theoretical approach through which HRA would effectively contribute to decisions, the idea has not been empirically tested. Therefore, studys objective is to analyze how HRA leads to talent decision making through the EBM approach. Analysis of how HRA leads to decisions were grounded on (a) the structure of decision problems (PS), the stages of the decision-making process (DMP) where HR analytics centers its contributions, (c) the quantitative analytical methods (QAM) employed in data analysis and (c) the interaction among HR Analytics and EBM along the process. Basic qualitative research was employed to assess HR Analytics decision processes performed in organizations located in Brazil. The study relied on 8 semi structured interviews with professionals who have leaded or taken an important part in a HR Analytics decision process. Content and template analysis were employed as data analysis methods. It was found that PS and QAM were not decisive to shed light on how HRA leads to decision-making. The evidence-based management approach seemed relevant to (a) provide evidence needed to the execution of quantitative analysis and (b) to intermediate HRAs inputs to decisions. Results also shed light on the nature and different roles of these inputs.
id USP_681757b620a00fcaaf7a648883c57e5a
oai_identifier_str oai:teses.usp.br:tde-23022023-195912
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling HR Analytics and the decision-making process: an evidence-based management approachHR Analytics e o processo decisório: uma abordagem evidence-based managementAnalytics decision making processBusinessEvidence-based managementGestão por evidênciasHR AnalyticsHR AnalyticsProcesso decisórioHR Analytics (HRA) has gained attention from practitioners and scholars under the promise of providing basis for better decision making. However, the question regarding how HRA can be effectively used to support decisions in organizations remains answered. Although some suggest Evidence-Based Management (EBM) as the theoretical approach through which HRA would effectively contribute to decisions, the idea has not been empirically tested. Therefore, studys objective is to analyze how HRA leads to talent decision making through the EBM approach. Analysis of how HRA leads to decisions were grounded on (a) the structure of decision problems (PS), the stages of the decision-making process (DMP) where HR analytics centers its contributions, (c) the quantitative analytical methods (QAM) employed in data analysis and (c) the interaction among HR Analytics and EBM along the process. Basic qualitative research was employed to assess HR Analytics decision processes performed in organizations located in Brazil. The study relied on 8 semi structured interviews with professionals who have leaded or taken an important part in a HR Analytics decision process. Content and template analysis were employed as data analysis methods. It was found that PS and QAM were not decisive to shed light on how HRA leads to decision-making. The evidence-based management approach seemed relevant to (a) provide evidence needed to the execution of quantitative analysis and (b) to intermediate HRAs inputs to decisions. Results also shed light on the nature and different roles of these inputs.A prática de HR Analytics (HRA) tem ganhado atenção do mercado e da academia através da promessa de fornecer fundamentos para a tomada de decisão nas empresas. No entanto, a literatura aponta pouco entendimento a respeito de como o HRA pode ser usado para direcionar a tomada de decisão nas organizações. Apesar de haver menções ao evidence-based management (EBM) como uma possível lente teórica para a tomada de decisão com o HR Analytics, esta relação ainda não foi empiricamente testada. No entanto, o estudo tem como objetivo analisar como HR Analytics leva a tomada de decisão nas organizações através da abordagem Evidence-Based Management. A análise de como o HRA leva a tomada de decisão foi baseada (a) na estrutura de problemas decisórios (PS) (b) nos estágios do processo de tomada de decisão onde o HRA acontece, (c) nos métodos quantitativos empregados na análise de dados, por fim (d) na interação ente o HRA e o EBM ao longo do processo decisório. A pesquisa qualitativa básica foi usada para coletar dados a respeito de processos de tomada de decisão realizados com o HR Analytics. O estudo contou com 8 entrevistas semiestruturadas com profissionais que lideraram (ou tiveram uma participação importante) em algum processo de tomada de decisão com HR Analytics. Os dados foram analisados através de análise de conteúdo e template analysis. Os resultados mostraram que PS e QAM não foram decisivos para o entendimento de como o HRA leva a tomada de decisão. O EBM por sua vez, mostrou um papel importante tanto como (a) provedor das evidências necessárias para a execução das análises quantitativas, como quanto (b) intermediador dos inputs do HRA para o processo decisório. Os resultados também mostraram a natureza dos diversos inputs que o HRA pode prover para a tomada de decisão nas organizações.Biblioteca Digitais de Teses e Dissertações da USPVasconcellos, LilianaScaf, Amanda2022-11-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/12/12139/tde-23022023-195912/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-03-29T13:30:30Zoai:teses.usp.br:tde-23022023-195912Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-03-29T13:30:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv HR Analytics and the decision-making process: an evidence-based management approach
HR Analytics e o processo decisório: uma abordagem evidence-based management
title HR Analytics and the decision-making process: an evidence-based management approach
spellingShingle HR Analytics and the decision-making process: an evidence-based management approach
Scaf, Amanda
Analytics decision making process
Business
Evidence-based management
Gestão por evidências
HR Analytics
HR Analytics
Processo decisório
title_short HR Analytics and the decision-making process: an evidence-based management approach
title_full HR Analytics and the decision-making process: an evidence-based management approach
title_fullStr HR Analytics and the decision-making process: an evidence-based management approach
title_full_unstemmed HR Analytics and the decision-making process: an evidence-based management approach
title_sort HR Analytics and the decision-making process: an evidence-based management approach
author Scaf, Amanda
author_facet Scaf, Amanda
author_role author
dc.contributor.none.fl_str_mv Vasconcellos, Liliana
dc.contributor.author.fl_str_mv Scaf, Amanda
dc.subject.por.fl_str_mv Analytics decision making process
Business
Evidence-based management
Gestão por evidências
HR Analytics
HR Analytics
Processo decisório
topic Analytics decision making process
Business
Evidence-based management
Gestão por evidências
HR Analytics
HR Analytics
Processo decisório
description HR Analytics (HRA) has gained attention from practitioners and scholars under the promise of providing basis for better decision making. However, the question regarding how HRA can be effectively used to support decisions in organizations remains answered. Although some suggest Evidence-Based Management (EBM) as the theoretical approach through which HRA would effectively contribute to decisions, the idea has not been empirically tested. Therefore, studys objective is to analyze how HRA leads to talent decision making through the EBM approach. Analysis of how HRA leads to decisions were grounded on (a) the structure of decision problems (PS), the stages of the decision-making process (DMP) where HR analytics centers its contributions, (c) the quantitative analytical methods (QAM) employed in data analysis and (c) the interaction among HR Analytics and EBM along the process. Basic qualitative research was employed to assess HR Analytics decision processes performed in organizations located in Brazil. The study relied on 8 semi structured interviews with professionals who have leaded or taken an important part in a HR Analytics decision process. Content and template analysis were employed as data analysis methods. It was found that PS and QAM were not decisive to shed light on how HRA leads to decision-making. The evidence-based management approach seemed relevant to (a) provide evidence needed to the execution of quantitative analysis and (b) to intermediate HRAs inputs to decisions. Results also shed light on the nature and different roles of these inputs.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/12/12139/tde-23022023-195912/
url https://www.teses.usp.br/teses/disponiveis/12/12139/tde-23022023-195912/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257293555499008