Structure characterization of complex networks for machine learning

Detalhes bibliográficos
Autor(a) principal: Anghinoni, Leandro
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092023-143213/
Resumo: Over the last decade, machine learning has flourished due to significant advances in hardware capacity and model developments. Network based models have recently gained a lot of attention due to their capacity to learn not only from the physical features (similarity, distribution, etc.), but also from the connectivity pattern of the data. In the search of better models, the research has evolved to incorporate the structure of the network in the learning process. Some recent works have shown that exploiting the network structure can lead to better learning performance. This is done by capturing the more relevant connections in the training process based on the network topology. In light of this, this thesis carries out four studies to incorporate the network structure in machine learning algorithms. In the first study, the network structure is used to learn time series patterns via community detection algorithms. The second study uses a core-periphery network structure to represent data where the data within one of the classes has a very high dispersion and is hard to be classified by traditional algorithms. In other words, we introduce a network-based method to represent data pattern of the data without pattern. The third study aims to model an epidemic outbreak via link prediction in a network constructed from real data. We find that social isolation and wearing masks can effectively decrease the COVID-19 epidemics peak. In the final study, we propose a novel Graph Neural Network (GNN) model by combining the community structure of the underlying data graph and the feature vectors of the nodes to generate a graph embedding in a fast way. The proposed GNN can avoid the over-smoothing drawback of classic ones. These studies show that complex network approach can overcome various shortcomings of classic learning techniques.
id USP_6c3434f000d0bc39dd2a8d7c953e1f81
oai_identifier_str oai:teses.usp.br:tde-13092023-143213
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Structure characterization of complex networks for machine learningCaracterização da estrutura de redes complexas para aprendizado de máquinasAprendizado de máquinaCommunity structureComplex networksCore- periphery networkEstrutura de comunidadesGraph neural networkGraph neural networkMachine learningRedes complexasRedes Core-peripheryOver the last decade, machine learning has flourished due to significant advances in hardware capacity and model developments. Network based models have recently gained a lot of attention due to their capacity to learn not only from the physical features (similarity, distribution, etc.), but also from the connectivity pattern of the data. In the search of better models, the research has evolved to incorporate the structure of the network in the learning process. Some recent works have shown that exploiting the network structure can lead to better learning performance. This is done by capturing the more relevant connections in the training process based on the network topology. In light of this, this thesis carries out four studies to incorporate the network structure in machine learning algorithms. In the first study, the network structure is used to learn time series patterns via community detection algorithms. The second study uses a core-periphery network structure to represent data where the data within one of the classes has a very high dispersion and is hard to be classified by traditional algorithms. In other words, we introduce a network-based method to represent data pattern of the data without pattern. The third study aims to model an epidemic outbreak via link prediction in a network constructed from real data. We find that social isolation and wearing masks can effectively decrease the COVID-19 epidemics peak. In the final study, we propose a novel Graph Neural Network (GNN) model by combining the community structure of the underlying data graph and the feature vectors of the nodes to generate a graph embedding in a fast way. The proposed GNN can avoid the over-smoothing drawback of classic ones. These studies show that complex network approach can overcome various shortcomings of classic learning techniques.Na última década, o aprendizado de máquina prosperou devido à avanços significativos na capacidade do hardware e no desenvolvimento de novos modelos. Modelos baseados em redes têm atraído bastante atenção recentemente por sua capacidade de aprender não somente com base nas características físicas dos dados (similaridade, distribuição, etc.) mas também com base no padrão de conexão entre os dados. Na busca de modelos melhores, a pesquisa evoluiu para incorporar a estrutura da rede no processo de aprendizagem. Alguns trabalhos recentes têm mostrado que explorar a estrutura da rede pode levar a melhores resultados de aprendizagem. Isto é feito capturando as conexões mais relevantes no processo de aprendizagem baseado na topologia da rede. Em vista disso, esta tese desenvolve quatro estudos para incorporar a estrutura da rede em algoritmos de aprendizado de máquina. No primeiro estudo, a estrutura da rede é utilizada para aprender padrões de séries temporais através de algoritmos de detecção de comunidades. O segundo estudo usa uma estrutura de rede core-periphery para representar dados onde uma das classes tem uma alta dispersão e é difícil de ser classificada por algoritmos tradicionais. Em outras palavras, introduzimos um método baseado em rede para representar o padrão de dados \"sem padrão\". O terceiro estudo propõe modelar um surto epidêmico através da predição de conexões em uma rede construída a partir de dados reais. Mostra-se que o isolamento social e o uso de máscaras pode diminiur o pico de casos de COVID-19. No último estudo, propomos um novo modelo de rede neural em grafo (Graph Neural Network) que combina a estrutura de comunidade dos dados do grafo e os vetores de características dos nós para gerar um embedding do grafo de forma rápida. A GNN proposta evita o problema de over-smoothing de métodos clássicos. Estes estudos mostram que a abordagem através de redes complexas pode superar várias deficiências de técnicas clássicas de aprendizado.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoSilva, Israel Tojal daAnghinoni, Leandro2023-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092023-143213/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-13T17:40:03Zoai:teses.usp.br:tde-13092023-143213Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-13T17:40:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Structure characterization of complex networks for machine learning
Caracterização da estrutura de redes complexas para aprendizado de máquinas
title Structure characterization of complex networks for machine learning
spellingShingle Structure characterization of complex networks for machine learning
Anghinoni, Leandro
Aprendizado de máquina
Community structure
Complex networks
Core- periphery network
Estrutura de comunidades
Graph neural network
Graph neural network
Machine learning
Redes complexas
Redes Core-periphery
title_short Structure characterization of complex networks for machine learning
title_full Structure characterization of complex networks for machine learning
title_fullStr Structure characterization of complex networks for machine learning
title_full_unstemmed Structure characterization of complex networks for machine learning
title_sort Structure characterization of complex networks for machine learning
author Anghinoni, Leandro
author_facet Anghinoni, Leandro
author_role author
dc.contributor.none.fl_str_mv Liang, Zhao
Silva, Israel Tojal da
dc.contributor.author.fl_str_mv Anghinoni, Leandro
dc.subject.por.fl_str_mv Aprendizado de máquina
Community structure
Complex networks
Core- periphery network
Estrutura de comunidades
Graph neural network
Graph neural network
Machine learning
Redes complexas
Redes Core-periphery
topic Aprendizado de máquina
Community structure
Complex networks
Core- periphery network
Estrutura de comunidades
Graph neural network
Graph neural network
Machine learning
Redes complexas
Redes Core-periphery
description Over the last decade, machine learning has flourished due to significant advances in hardware capacity and model developments. Network based models have recently gained a lot of attention due to their capacity to learn not only from the physical features (similarity, distribution, etc.), but also from the connectivity pattern of the data. In the search of better models, the research has evolved to incorporate the structure of the network in the learning process. Some recent works have shown that exploiting the network structure can lead to better learning performance. This is done by capturing the more relevant connections in the training process based on the network topology. In light of this, this thesis carries out four studies to incorporate the network structure in machine learning algorithms. In the first study, the network structure is used to learn time series patterns via community detection algorithms. The second study uses a core-periphery network structure to represent data where the data within one of the classes has a very high dispersion and is hard to be classified by traditional algorithms. In other words, we introduce a network-based method to represent data pattern of the data without pattern. The third study aims to model an epidemic outbreak via link prediction in a network constructed from real data. We find that social isolation and wearing masks can effectively decrease the COVID-19 epidemics peak. In the final study, we propose a novel Graph Neural Network (GNN) model by combining the community structure of the underlying data graph and the feature vectors of the nodes to generate a graph embedding in a fast way. The proposed GNN can avoid the over-smoothing drawback of classic ones. These studies show that complex network approach can overcome various shortcomings of classic learning techniques.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092023-143213/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-13092023-143213/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256945492230144