Uma abordagem híbrida para sistemas de recomendação de notícias

Detalhes bibliográficos
Autor(a) principal: Pagnossim, José Luiz Maturana
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-101232/
Resumo: Sistemas de Recomendação (SR) são softwares capazes de sugerir itens aos usuários com base no histórico de interações de usuários ou por meio de métricas de similaridade que podem ser comparadas por item, usuário ou ambos. Existem diferentes tipos de SR e dentre os que despertam maior interesse deste trabalho estão: SR baseados em conteúdo; SR baseados em conhecimento; e SR baseado em filtro colaborativo. Alcançar resultados adequados às expectativas dos usuários não é uma meta simples devido à subjetividade inerente ao comportamento humano, para isso, SR precisam de soluções eficientes e eficazes para: modelagem dos dados que suportarão a recomendação; recuperação da informação que descrevem os dados; combinação dessas informações dentro de métricas de similaridade, popularidade ou adequabilidade; criação de modelos descritivos dos itens sob recomendação; e evolução da inteligência do sistema de forma que ele seja capaz de aprender a partir da interação com o usuário. A tomada de decisão por um sistema de recomendação é uma tarefa complexa que pode ser implementada a partir da visão de áreas como inteligência artificial e mineração de dados. Dentro da área de inteligência artificial há estudos referentes ao método de raciocínio baseado em casos e da recomendação baseada em casos. No que diz respeito à área de mineração de dados, os SR podem ser construídos a partir de modelos descritivos e realizar tratamento de dados textuais, constituindo formas de criar elementos para compor uma recomendação. Uma forma de minimizar os pontos fracos de uma abordagem, é a adoção de aspectos baseados em uma abordagem híbrida, que neste trabalho considera-se: tirar proveito dos diferentes tipos de SR; usar técnicas de resolução de problemas; e combinar recursos provenientes das diferentes fontes para compor uma métrica unificada a ser usada para ranquear a recomendação por relevância. Dentre as áreas de aplicação dos SR, destaca-se a recomendação de notícias, sendo utilizada por um público heterogêneo, amplo e exigente por relevância. Neste contexto, a presente pesquisa apresenta uma abordagem híbrida para recomendação de notícias construída por meio de uma arquitetura implementada para provar os conceitos de um sistema de recomendação. Esta arquitetura foi validada por meio da utilização de um corpus de notícias e pela realização de um experimento online. Por meio do experimento foi possível observar a capacidade da arquitetura em relação aos requisitos de um sistema de recomendação de notícias e também confirmar a hipótese no que se refere à privilegiar recomendações com base em similaridade, popularidade, diversidade, novidade e serendipidade. Foi observado também uma evolução nos indicadores de leitura, curtida, aceite e serendipidade conforme o sistema foi acumulando histórico de preferências e soluções. Por meio da análise da métrica unificada para ranqueamento foi possível confirmar sua eficácia ao verificar que as notícias melhores colocadas no ranqueamento foram as mais aceitas pelos usuários
id USP_72f7ec85289a9a0bef5f5cfc4f08b073
oai_identifier_str oai:teses.usp.br:tde-07062018-101232
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Uma abordagem híbrida para sistemas de recomendação de notíciasA hybrid approach to news recommendation systemsArquitetura de Recomendação HíbridaCase Based ReasoningCase Based RecommendationCollaborative FilteringContent Based RecommendationData MiningFiltro ColaborativoHybrid Recommender ArchitectureKnowledge Based RecommendationMineração de DadosMineração de TextoNews RecommendationRaciocínio Baseado em CasosRecomendação Baseada em CasosRecomendação Baseada em ConhecimentoRecomendação Baseada em ConteúdoRecomendação de NotíciasRecommendation SystemsSistemas de RecomendaçãoText MiningSistemas de Recomendação (SR) são softwares capazes de sugerir itens aos usuários com base no histórico de interações de usuários ou por meio de métricas de similaridade que podem ser comparadas por item, usuário ou ambos. Existem diferentes tipos de SR e dentre os que despertam maior interesse deste trabalho estão: SR baseados em conteúdo; SR baseados em conhecimento; e SR baseado em filtro colaborativo. Alcançar resultados adequados às expectativas dos usuários não é uma meta simples devido à subjetividade inerente ao comportamento humano, para isso, SR precisam de soluções eficientes e eficazes para: modelagem dos dados que suportarão a recomendação; recuperação da informação que descrevem os dados; combinação dessas informações dentro de métricas de similaridade, popularidade ou adequabilidade; criação de modelos descritivos dos itens sob recomendação; e evolução da inteligência do sistema de forma que ele seja capaz de aprender a partir da interação com o usuário. A tomada de decisão por um sistema de recomendação é uma tarefa complexa que pode ser implementada a partir da visão de áreas como inteligência artificial e mineração de dados. Dentro da área de inteligência artificial há estudos referentes ao método de raciocínio baseado em casos e da recomendação baseada em casos. No que diz respeito à área de mineração de dados, os SR podem ser construídos a partir de modelos descritivos e realizar tratamento de dados textuais, constituindo formas de criar elementos para compor uma recomendação. Uma forma de minimizar os pontos fracos de uma abordagem, é a adoção de aspectos baseados em uma abordagem híbrida, que neste trabalho considera-se: tirar proveito dos diferentes tipos de SR; usar técnicas de resolução de problemas; e combinar recursos provenientes das diferentes fontes para compor uma métrica unificada a ser usada para ranquear a recomendação por relevância. Dentre as áreas de aplicação dos SR, destaca-se a recomendação de notícias, sendo utilizada por um público heterogêneo, amplo e exigente por relevância. Neste contexto, a presente pesquisa apresenta uma abordagem híbrida para recomendação de notícias construída por meio de uma arquitetura implementada para provar os conceitos de um sistema de recomendação. Esta arquitetura foi validada por meio da utilização de um corpus de notícias e pela realização de um experimento online. Por meio do experimento foi possível observar a capacidade da arquitetura em relação aos requisitos de um sistema de recomendação de notícias e também confirmar a hipótese no que se refere à privilegiar recomendações com base em similaridade, popularidade, diversidade, novidade e serendipidade. Foi observado também uma evolução nos indicadores de leitura, curtida, aceite e serendipidade conforme o sistema foi acumulando histórico de preferências e soluções. Por meio da análise da métrica unificada para ranqueamento foi possível confirmar sua eficácia ao verificar que as notícias melhores colocadas no ranqueamento foram as mais aceitas pelos usuáriosRecommendation Systems (RS) are software capable of suggesting items to users based on the history of user interactions or by similarity metrics that can be compared by item, user, or both. There are different types of RS and those which most interest in this work are content-based, knowledge-based and collaborative filtering. Achieving adequate results to user\'s expectations is a hard goal due to the inherent subjectivity of human behavior, thus, the RS need efficient and effective solutions to: modeling the data that will support the recommendation; the information retrieval that describes the data; combining this information within similarity, popularity or suitability metrics; creation of descriptive models of the items under recommendation; and evolution of the systems intelligence to learn from the user\'s interaction. Decision-making by a RS is a complex task that can be implemented according to the view of fields such as artificial intelligence and data mining. In the artificial intelligence field there are studies concerning the method of case-based reasoning that works with the principle that if something worked in the past, it may work again in a new similar situation the one in the past. The case-based recommendation works with structured items, represented by a set of attributes and their respective values (within a ``case\'\' model), providing known and adapted solutions. Data mining area can build descriptive models to RS and also handle, manipulate and analyze textual data, constituting one option to create elements to compose a recommendation. One way to minimize the weaknesses of an approach is to adopt aspects based on a hybrid solution, which in this work considers: taking advantage of the different types of RS; using problem-solving techniques; and combining resources from different sources to compose a unified metric to be used to rank the recommendation by relevance. Among the RS application areas, news recommendation stands out, being used by a heterogeneous public, ample and demanding by relevance. In this context, the this work shows a hybrid approach to news recommendations built through a architecture implemented to prove the concepts of a recommendation system. This architecture has been validated by using a news corpus and by performing an online experiment. Through the experiment it was possible to observe the architecture capacity related to the requirements of a news recommendation system and architecture also related to privilege recommendations based on similarity, popularity, diversity, novelty and serendipity. It was also observed an evolution in the indicators of reading, likes, acceptance and serendipity as the system accumulated a history of preferences and solutions. Through the analysis of the unified metric for ranking, it was possible to confirm its efficacy when verifying that the best classified news in the ranking was the most accepted by the usersBiblioteca Digitais de Teses e Dissertações da USPPeres, Sarajane MarquesPagnossim, José Luiz Maturana2018-04-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-101232/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-07062018-101232Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Uma abordagem híbrida para sistemas de recomendação de notícias
A hybrid approach to news recommendation systems
title Uma abordagem híbrida para sistemas de recomendação de notícias
spellingShingle Uma abordagem híbrida para sistemas de recomendação de notícias
Pagnossim, José Luiz Maturana
Arquitetura de Recomendação Híbrida
Case Based Reasoning
Case Based Recommendation
Collaborative Filtering
Content Based Recommendation
Data Mining
Filtro Colaborativo
Hybrid Recommender Architecture
Knowledge Based Recommendation
Mineração de Dados
Mineração de Texto
News Recommendation
Raciocínio Baseado em Casos
Recomendação Baseada em Casos
Recomendação Baseada em Conhecimento
Recomendação Baseada em Conteúdo
Recomendação de Notícias
Recommendation Systems
Sistemas de Recomendação
Text Mining
title_short Uma abordagem híbrida para sistemas de recomendação de notícias
title_full Uma abordagem híbrida para sistemas de recomendação de notícias
title_fullStr Uma abordagem híbrida para sistemas de recomendação de notícias
title_full_unstemmed Uma abordagem híbrida para sistemas de recomendação de notícias
title_sort Uma abordagem híbrida para sistemas de recomendação de notícias
author Pagnossim, José Luiz Maturana
author_facet Pagnossim, José Luiz Maturana
author_role author
dc.contributor.none.fl_str_mv Peres, Sarajane Marques
dc.contributor.author.fl_str_mv Pagnossim, José Luiz Maturana
dc.subject.por.fl_str_mv Arquitetura de Recomendação Híbrida
Case Based Reasoning
Case Based Recommendation
Collaborative Filtering
Content Based Recommendation
Data Mining
Filtro Colaborativo
Hybrid Recommender Architecture
Knowledge Based Recommendation
Mineração de Dados
Mineração de Texto
News Recommendation
Raciocínio Baseado em Casos
Recomendação Baseada em Casos
Recomendação Baseada em Conhecimento
Recomendação Baseada em Conteúdo
Recomendação de Notícias
Recommendation Systems
Sistemas de Recomendação
Text Mining
topic Arquitetura de Recomendação Híbrida
Case Based Reasoning
Case Based Recommendation
Collaborative Filtering
Content Based Recommendation
Data Mining
Filtro Colaborativo
Hybrid Recommender Architecture
Knowledge Based Recommendation
Mineração de Dados
Mineração de Texto
News Recommendation
Raciocínio Baseado em Casos
Recomendação Baseada em Casos
Recomendação Baseada em Conhecimento
Recomendação Baseada em Conteúdo
Recomendação de Notícias
Recommendation Systems
Sistemas de Recomendação
Text Mining
description Sistemas de Recomendação (SR) são softwares capazes de sugerir itens aos usuários com base no histórico de interações de usuários ou por meio de métricas de similaridade que podem ser comparadas por item, usuário ou ambos. Existem diferentes tipos de SR e dentre os que despertam maior interesse deste trabalho estão: SR baseados em conteúdo; SR baseados em conhecimento; e SR baseado em filtro colaborativo. Alcançar resultados adequados às expectativas dos usuários não é uma meta simples devido à subjetividade inerente ao comportamento humano, para isso, SR precisam de soluções eficientes e eficazes para: modelagem dos dados que suportarão a recomendação; recuperação da informação que descrevem os dados; combinação dessas informações dentro de métricas de similaridade, popularidade ou adequabilidade; criação de modelos descritivos dos itens sob recomendação; e evolução da inteligência do sistema de forma que ele seja capaz de aprender a partir da interação com o usuário. A tomada de decisão por um sistema de recomendação é uma tarefa complexa que pode ser implementada a partir da visão de áreas como inteligência artificial e mineração de dados. Dentro da área de inteligência artificial há estudos referentes ao método de raciocínio baseado em casos e da recomendação baseada em casos. No que diz respeito à área de mineração de dados, os SR podem ser construídos a partir de modelos descritivos e realizar tratamento de dados textuais, constituindo formas de criar elementos para compor uma recomendação. Uma forma de minimizar os pontos fracos de uma abordagem, é a adoção de aspectos baseados em uma abordagem híbrida, que neste trabalho considera-se: tirar proveito dos diferentes tipos de SR; usar técnicas de resolução de problemas; e combinar recursos provenientes das diferentes fontes para compor uma métrica unificada a ser usada para ranquear a recomendação por relevância. Dentre as áreas de aplicação dos SR, destaca-se a recomendação de notícias, sendo utilizada por um público heterogêneo, amplo e exigente por relevância. Neste contexto, a presente pesquisa apresenta uma abordagem híbrida para recomendação de notícias construída por meio de uma arquitetura implementada para provar os conceitos de um sistema de recomendação. Esta arquitetura foi validada por meio da utilização de um corpus de notícias e pela realização de um experimento online. Por meio do experimento foi possível observar a capacidade da arquitetura em relação aos requisitos de um sistema de recomendação de notícias e também confirmar a hipótese no que se refere à privilegiar recomendações com base em similaridade, popularidade, diversidade, novidade e serendipidade. Foi observado também uma evolução nos indicadores de leitura, curtida, aceite e serendipidade conforme o sistema foi acumulando histórico de preferências e soluções. Por meio da análise da métrica unificada para ranqueamento foi possível confirmar sua eficácia ao verificar que as notícias melhores colocadas no ranqueamento foram as mais aceitas pelos usuários
publishDate 2018
dc.date.none.fl_str_mv 2018-04-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-101232/
url http://www.teses.usp.br/teses/disponiveis/100/100131/tde-07062018-101232/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279064966791168