Equações elípticas com não lineradidades críticas e perturbações de ordem inferior
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102016-163017/ |
Resumo: | Neste trabalho, tivemos como objetivo estudar a existência de soluções fracas não triviais para o problema elíptico com não linearidade crítica { - Δu = λu + u2* - 1+ + g(x, u+) + f(x); em Ω u = 0; sobre ∂ Ω , (P) onde Ω é um domínio limitado com fronteira suave em ℝN, com N ≥ 3, 2* = 2N / (N - 2) é o expoente crítico de Sobolev, u+ = max(u; 0), g ∈ C(Ω̄ x ℝ, ℝ+), λ > λ1, λ ∉ σ (- Δ) e f ∈ Lr> (Ω), com r > N. Com o intuito de observar as mudanças que ocorrem do caso subcrítico para o crítico e as diferentes técnicas variacionais para a resolução de problemas elípticos, estudamos, inicialmente, um problema um pouco mais antigo que (P), que, por sua vez, motivou seu estudo. Tal problema é { - Δu = λ u + up+ +f; em Ω u = 0; sobre ∂ Ω(P\') onde consideramos o caso subcrítico, ou seja, quando p ∈ (1; 2* - 1). Com o auxílio do TEOREMA DE ENLACE verificamos que tanto (P) quanto (P\') têm pelo menos duas soluções fracas não triviais. |
id |
USP_757406b29f2cc0aa5081bd58c5af30f3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-10102016-163017 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferiorEliptic equations with nonlinearities and critical order disturbances lowerElliptic partial differential equationsEquações diferenciais parciaisEquações diferenciais parciais elípticasPartial differential equationsProblemas com expoente críticoProblems with critical exponentNeste trabalho, tivemos como objetivo estudar a existência de soluções fracas não triviais para o problema elíptico com não linearidade crítica { - Δu = λu + u2* - 1+ + g(x, u+) + f(x); em Ω u = 0; sobre ∂ Ω , (P) onde Ω é um domínio limitado com fronteira suave em ℝN, com N ≥ 3, 2* = 2N / (N - 2) é o expoente crítico de Sobolev, u+ = max(u; 0), g ∈ C(Ω̄ x ℝ, ℝ+), λ > λ1, λ ∉ σ (- Δ) e f ∈ Lr> (Ω), com r > N. Com o intuito de observar as mudanças que ocorrem do caso subcrítico para o crítico e as diferentes técnicas variacionais para a resolução de problemas elípticos, estudamos, inicialmente, um problema um pouco mais antigo que (P), que, por sua vez, motivou seu estudo. Tal problema é { - Δu = λ u + up+ +f; em Ω u = 0; sobre ∂ Ω(P\') onde consideramos o caso subcrítico, ou seja, quando p ∈ (1; 2* - 1). Com o auxílio do TEOREMA DE ENLACE verificamos que tanto (P) quanto (P\') têm pelo menos duas soluções fracas não triviais.In this work, we aimed to study the existence of nontrivial weak solutions for the elliptic problem with critical non-linearity { - Δu = λu + u2* - 1+ + g(x, u+) + f(x); in Ω u = 0; on ∂ Ω , (P) where Ω is a bounded domain with smooth boundary in ℝN, with N ≥ 3, 2* = 2N / N -2 is the critical Sobolev exponent, u+ = max(u; 0), g ∈ C(Ω̄ x ℝ, ℝ+), λ > λ1, λ ∉ σ (- Δ) and f ∈ Lr (Ω), with r > N. In order to observe different variational techniques for solving elliptic problems, we studied initially a problem a little older than (P), which, in turn, led to its study. This problem is { - Δu = λ u + up+ +f; inΩ u = 0; on ∂ Ω(P\') where we consider the subcritical case, that is, when p ∈ (1, 2* - 1). With the aid of the LINKING THEOREM we see that both (P) and (P\') have at least two nontrivial weak solutions.Biblioteca Digitais de Teses e Dissertações da USPMassa, Eugenio TommasoAraújo, Maycon Sullivan Santos2015-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102016-163017/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:30Zoai:teses.usp.br:tde-10102016-163017Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:30Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior Eliptic equations with nonlinearities and critical order disturbances lower |
title |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior |
spellingShingle |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior Araújo, Maycon Sullivan Santos Elliptic partial differential equations Equações diferenciais parciais Equações diferenciais parciais elípticas Partial differential equations Problemas com expoente crítico Problems with critical exponent |
title_short |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior |
title_full |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior |
title_fullStr |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior |
title_full_unstemmed |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior |
title_sort |
Equações elípticas com não lineradidades críticas e perturbações de ordem inferior |
author |
Araújo, Maycon Sullivan Santos |
author_facet |
Araújo, Maycon Sullivan Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Massa, Eugenio Tommaso |
dc.contributor.author.fl_str_mv |
Araújo, Maycon Sullivan Santos |
dc.subject.por.fl_str_mv |
Elliptic partial differential equations Equações diferenciais parciais Equações diferenciais parciais elípticas Partial differential equations Problemas com expoente crítico Problems with critical exponent |
topic |
Elliptic partial differential equations Equações diferenciais parciais Equações diferenciais parciais elípticas Partial differential equations Problemas com expoente crítico Problems with critical exponent |
description |
Neste trabalho, tivemos como objetivo estudar a existência de soluções fracas não triviais para o problema elíptico com não linearidade crítica { - Δu = λu + u2* - 1+ + g(x, u+) + f(x); em Ω u = 0; sobre ∂ Ω , (P) onde Ω é um domínio limitado com fronteira suave em ℝN, com N ≥ 3, 2* = 2N / (N - 2) é o expoente crítico de Sobolev, u+ = max(u; 0), g ∈ C(Ω̄ x ℝ, ℝ+), λ > λ1, λ ∉ σ (- Δ) e f ∈ Lr> (Ω), com r > N. Com o intuito de observar as mudanças que ocorrem do caso subcrítico para o crítico e as diferentes técnicas variacionais para a resolução de problemas elípticos, estudamos, inicialmente, um problema um pouco mais antigo que (P), que, por sua vez, motivou seu estudo. Tal problema é { - Δu = λ u + up+ +f; em Ω u = 0; sobre ∂ Ω(P\') onde consideramos o caso subcrítico, ou seja, quando p ∈ (1; 2* - 1). Com o auxílio do TEOREMA DE ENLACE verificamos que tanto (P) quanto (P\') têm pelo menos duas soluções fracas não triviais. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102016-163017/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10102016-163017/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256924312043520 |