Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/ |
Resumo: | Complex networks are essential tools for understanding interconnected systems across various domains. This thesis focuses on the analysis, classification, and modeling of complex networks, aiming to extract meaningful insights using innovative methodologies. The study explores the complex network classification, with a secondary focus on modeling real phenomena in health science and shape analysis. The research objective is to develop novel methodologies surpassing existing network classification techniques. Two key components are investigated: utilizing the adjacency matrix for network analysis and applying multiscale techniques for graph analysis. The investigation of the graph matrices reveals promising results, with node centrality-based ordination and node similarity enhancing image analysis representation. Quantitative analysis on diverse datasets, including real systems, demonstrates satisfactory classification accuracies with low parametrization. Also, computer vision-inspired techniques, such as k-core decomposition and distance transform enhance graph and shape classification. The completion of this PhD in complex networks also explores the ICD-ORPHA network from the Brazilian Ministry of Health. To address the limitations of the ICD-10 system for rare diseases, a specialized medical terminology known as ORPHA is employed, providing a comprehensive nomenclature specifically designed for rare diseases. This research expands the understanding of complex network modeling and its application in the healthcare domain through an interactive web-app system. Furthermore, during the COVID-19 pandemic, a proposed SIR-based model evaluates population dynamics and enhances understanding of the evolution of the pandemic. These methodologies offer valuable tools for public health insights and classification performance improvement. In conclusion, this research advances complex network analysis, classification, and modeling with innovative methodologies. Findings have broad applications across domains, including synthetic and real networks, health data, and shape analysis. The research outcomes offer practical solutions for understanding interconnected systems and contribute to the advancement of complex network analysis. |
id |
USP_7e706c584403b52e5d01e292588c2af5 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03012024-111728 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern RecognitionExplorando Redes Complexas: Abordagens Baseadas em Matrizes e Multiescala para Reconhecimento de PadrõesClassificaçãoClassificationComplex networksDecomposição de grafosGraph decompositionGraph matricesMatrizes de grafosModelagemModelingRedes complexasComplex networks are essential tools for understanding interconnected systems across various domains. This thesis focuses on the analysis, classification, and modeling of complex networks, aiming to extract meaningful insights using innovative methodologies. The study explores the complex network classification, with a secondary focus on modeling real phenomena in health science and shape analysis. The research objective is to develop novel methodologies surpassing existing network classification techniques. Two key components are investigated: utilizing the adjacency matrix for network analysis and applying multiscale techniques for graph analysis. The investigation of the graph matrices reveals promising results, with node centrality-based ordination and node similarity enhancing image analysis representation. Quantitative analysis on diverse datasets, including real systems, demonstrates satisfactory classification accuracies with low parametrization. Also, computer vision-inspired techniques, such as k-core decomposition and distance transform enhance graph and shape classification. The completion of this PhD in complex networks also explores the ICD-ORPHA network from the Brazilian Ministry of Health. To address the limitations of the ICD-10 system for rare diseases, a specialized medical terminology known as ORPHA is employed, providing a comprehensive nomenclature specifically designed for rare diseases. This research expands the understanding of complex network modeling and its application in the healthcare domain through an interactive web-app system. Furthermore, during the COVID-19 pandemic, a proposed SIR-based model evaluates population dynamics and enhances understanding of the evolution of the pandemic. These methodologies offer valuable tools for public health insights and classification performance improvement. In conclusion, this research advances complex network analysis, classification, and modeling with innovative methodologies. Findings have broad applications across domains, including synthetic and real networks, health data, and shape analysis. The research outcomes offer practical solutions for understanding interconnected systems and contribute to the advancement of complex network analysis.Redes complexas são ferramentas essenciais para compreender sistemas interconectados em diversos domínios. Esta tese concentra-se na análise, classificação e modelagem de redes complexas, com o objetivo de extrair insights significativos usando metodologias inovadoras. O estudo explora a classificação de redes complexas, com um enfoque secundário na modelagem de fenômenos reais na área da saúde e análise de formas. O objetivo da pesquisa é desenvolver metodologias inovadoras que superem as técnicas existentes de classificação de redes. Duas principais abordagens são investigadas: a utilização da matriz de adjacência para análise de redes e a aplicação de técnicas multiescala para análise de grafos. A investigação das matrizes de grafos revela resultados promissores, com a ordenação baseada na centralidade dos nós e na similaridade dos nós aprimorando a representação para análise de imagens. Análises quantitativas em diversos conjuntos de dados, incluindo sistemas reais, demonstram acurácias satisfatórias na classificação com baixa parametrização. Além disso, técnicas inspiradas em visão computacional, como a decomposição k-core e a transformada de distância, aprimoram a classificação de grafos e formas. A conclusão deste doutorado em redes complexas também explora a rede ICD-ORPHA do Ministério da Saúde do Brasil. Para lidar com as limitações do sistema ICD-10 para doenças raras, é empregada uma terminologia médica especializada conhecida como ORPHA, que fornece uma nomenclatura abrangente especificamente projetada para doenças raras. Essa pesquisa expande o conhecimento sobre a modelagem de redes complexas e sua aplicação na área da saúde por meio de um sistema web interativo. Além disso, durante a pandemia de COVID-19, um modelo proposto baseado no modelo SIR avalia a dinâmica populacional e melhora a compreensão da evolução da pandemia. Essas metodologias oferecem ferramentas valiosas para insights em saúde pública e melhoria no desempenho de classificação. Em conclusão, esta pesquisa avança a análise, classificação e modelagem de redes complexas com metodologias inovadoras. Os resultados têm amplas aplicações em diversos domínios, incluindo redes sintéticas e reais, dados de saúde e análise de formas. Os resultados da pesquisa oferecem soluções práticas para a compreensão de sistemas interconectados e contribuem para o avanço da análise de redes complexas.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezNeiva, Mariane Barros2023-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-01-03T13:26:03Zoai:teses.usp.br:tde-03012024-111728Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-03T13:26:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition Explorando Redes Complexas: Abordagens Baseadas em Matrizes e Multiescala para Reconhecimento de Padrões |
title |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition |
spellingShingle |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition Neiva, Mariane Barros Classificação Classification Complex networks Decomposição de grafos Graph decomposition Graph matrices Matrizes de grafos Modelagem Modeling Redes complexas |
title_short |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition |
title_full |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition |
title_fullStr |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition |
title_full_unstemmed |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition |
title_sort |
Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition |
author |
Neiva, Mariane Barros |
author_facet |
Neiva, Mariane Barros |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bruno, Odemir Martinez |
dc.contributor.author.fl_str_mv |
Neiva, Mariane Barros |
dc.subject.por.fl_str_mv |
Classificação Classification Complex networks Decomposição de grafos Graph decomposition Graph matrices Matrizes de grafos Modelagem Modeling Redes complexas |
topic |
Classificação Classification Complex networks Decomposição de grafos Graph decomposition Graph matrices Matrizes de grafos Modelagem Modeling Redes complexas |
description |
Complex networks are essential tools for understanding interconnected systems across various domains. This thesis focuses on the analysis, classification, and modeling of complex networks, aiming to extract meaningful insights using innovative methodologies. The study explores the complex network classification, with a secondary focus on modeling real phenomena in health science and shape analysis. The research objective is to develop novel methodologies surpassing existing network classification techniques. Two key components are investigated: utilizing the adjacency matrix for network analysis and applying multiscale techniques for graph analysis. The investigation of the graph matrices reveals promising results, with node centrality-based ordination and node similarity enhancing image analysis representation. Quantitative analysis on diverse datasets, including real systems, demonstrates satisfactory classification accuracies with low parametrization. Also, computer vision-inspired techniques, such as k-core decomposition and distance transform enhance graph and shape classification. The completion of this PhD in complex networks also explores the ICD-ORPHA network from the Brazilian Ministry of Health. To address the limitations of the ICD-10 system for rare diseases, a specialized medical terminology known as ORPHA is employed, providing a comprehensive nomenclature specifically designed for rare diseases. This research expands the understanding of complex network modeling and its application in the healthcare domain through an interactive web-app system. Furthermore, during the COVID-19 pandemic, a proposed SIR-based model evaluates population dynamics and enhances understanding of the evolution of the pandemic. These methodologies offer valuable tools for public health insights and classification performance improvement. In conclusion, this research advances complex network analysis, classification, and modeling with innovative methodologies. Findings have broad applications across domains, including synthetic and real networks, health data, and shape analysis. The research outcomes offer practical solutions for understanding interconnected systems and contribute to the advancement of complex network analysis. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-05 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/ |
url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256626802720768 |