Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition

Detalhes bibliográficos
Autor(a) principal: Neiva, Mariane Barros
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/
Resumo: Complex networks are essential tools for understanding interconnected systems across various domains. This thesis focuses on the analysis, classification, and modeling of complex networks, aiming to extract meaningful insights using innovative methodologies. The study explores the complex network classification, with a secondary focus on modeling real phenomena in health science and shape analysis. The research objective is to develop novel methodologies surpassing existing network classification techniques. Two key components are investigated: utilizing the adjacency matrix for network analysis and applying multiscale techniques for graph analysis. The investigation of the graph matrices reveals promising results, with node centrality-based ordination and node similarity enhancing image analysis representation. Quantitative analysis on diverse datasets, including real systems, demonstrates satisfactory classification accuracies with low parametrization. Also, computer vision-inspired techniques, such as k-core decomposition and distance transform enhance graph and shape classification. The completion of this PhD in complex networks also explores the ICD-ORPHA network from the Brazilian Ministry of Health. To address the limitations of the ICD-10 system for rare diseases, a specialized medical terminology known as ORPHA is employed, providing a comprehensive nomenclature specifically designed for rare diseases. This research expands the understanding of complex network modeling and its application in the healthcare domain through an interactive web-app system. Furthermore, during the COVID-19 pandemic, a proposed SIR-based model evaluates population dynamics and enhances understanding of the evolution of the pandemic. These methodologies offer valuable tools for public health insights and classification performance improvement. In conclusion, this research advances complex network analysis, classification, and modeling with innovative methodologies. Findings have broad applications across domains, including synthetic and real networks, health data, and shape analysis. The research outcomes offer practical solutions for understanding interconnected systems and contribute to the advancement of complex network analysis.
id USP_7e706c584403b52e5d01e292588c2af5
oai_identifier_str oai:teses.usp.br:tde-03012024-111728
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern RecognitionExplorando Redes Complexas: Abordagens Baseadas em Matrizes e Multiescala para Reconhecimento de PadrõesClassificaçãoClassificationComplex networksDecomposição de grafosGraph decompositionGraph matricesMatrizes de grafosModelagemModelingRedes complexasComplex networks are essential tools for understanding interconnected systems across various domains. This thesis focuses on the analysis, classification, and modeling of complex networks, aiming to extract meaningful insights using innovative methodologies. The study explores the complex network classification, with a secondary focus on modeling real phenomena in health science and shape analysis. The research objective is to develop novel methodologies surpassing existing network classification techniques. Two key components are investigated: utilizing the adjacency matrix for network analysis and applying multiscale techniques for graph analysis. The investigation of the graph matrices reveals promising results, with node centrality-based ordination and node similarity enhancing image analysis representation. Quantitative analysis on diverse datasets, including real systems, demonstrates satisfactory classification accuracies with low parametrization. Also, computer vision-inspired techniques, such as k-core decomposition and distance transform enhance graph and shape classification. The completion of this PhD in complex networks also explores the ICD-ORPHA network from the Brazilian Ministry of Health. To address the limitations of the ICD-10 system for rare diseases, a specialized medical terminology known as ORPHA is employed, providing a comprehensive nomenclature specifically designed for rare diseases. This research expands the understanding of complex network modeling and its application in the healthcare domain through an interactive web-app system. Furthermore, during the COVID-19 pandemic, a proposed SIR-based model evaluates population dynamics and enhances understanding of the evolution of the pandemic. These methodologies offer valuable tools for public health insights and classification performance improvement. In conclusion, this research advances complex network analysis, classification, and modeling with innovative methodologies. Findings have broad applications across domains, including synthetic and real networks, health data, and shape analysis. The research outcomes offer practical solutions for understanding interconnected systems and contribute to the advancement of complex network analysis.Redes complexas são ferramentas essenciais para compreender sistemas interconectados em diversos domínios. Esta tese concentra-se na análise, classificação e modelagem de redes complexas, com o objetivo de extrair insights significativos usando metodologias inovadoras. O estudo explora a classificação de redes complexas, com um enfoque secundário na modelagem de fenômenos reais na área da saúde e análise de formas. O objetivo da pesquisa é desenvolver metodologias inovadoras que superem as técnicas existentes de classificação de redes. Duas principais abordagens são investigadas: a utilização da matriz de adjacência para análise de redes e a aplicação de técnicas multiescala para análise de grafos. A investigação das matrizes de grafos revela resultados promissores, com a ordenação baseada na centralidade dos nós e na similaridade dos nós aprimorando a representação para análise de imagens. Análises quantitativas em diversos conjuntos de dados, incluindo sistemas reais, demonstram acurácias satisfatórias na classificação com baixa parametrização. Além disso, técnicas inspiradas em visão computacional, como a decomposição k-core e a transformada de distância, aprimoram a classificação de grafos e formas. A conclusão deste doutorado em redes complexas também explora a rede ICD-ORPHA do Ministério da Saúde do Brasil. Para lidar com as limitações do sistema ICD-10 para doenças raras, é empregada uma terminologia médica especializada conhecida como ORPHA, que fornece uma nomenclatura abrangente especificamente projetada para doenças raras. Essa pesquisa expande o conhecimento sobre a modelagem de redes complexas e sua aplicação na área da saúde por meio de um sistema web interativo. Além disso, durante a pandemia de COVID-19, um modelo proposto baseado no modelo SIR avalia a dinâmica populacional e melhora a compreensão da evolução da pandemia. Essas metodologias oferecem ferramentas valiosas para insights em saúde pública e melhoria no desempenho de classificação. Em conclusão, esta pesquisa avança a análise, classificação e modelagem de redes complexas com metodologias inovadoras. Os resultados têm amplas aplicações em diversos domínios, incluindo redes sintéticas e reais, dados de saúde e análise de formas. Os resultados da pesquisa oferecem soluções práticas para a compreensão de sistemas interconectados e contribuem para o avanço da análise de redes complexas.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezNeiva, Mariane Barros2023-09-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-01-03T13:26:03Zoai:teses.usp.br:tde-03012024-111728Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-01-03T13:26:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
Explorando Redes Complexas: Abordagens Baseadas em Matrizes e Multiescala para Reconhecimento de Padrões
title Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
spellingShingle Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
Neiva, Mariane Barros
Classificação
Classification
Complex networks
Decomposição de grafos
Graph decomposition
Graph matrices
Matrizes de grafos
Modelagem
Modeling
Redes complexas
title_short Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
title_full Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
title_fullStr Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
title_full_unstemmed Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
title_sort Exploring Complex Networks: Matrix-based and Multiscale Approaches for Pattern Recognition
author Neiva, Mariane Barros
author_facet Neiva, Mariane Barros
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Neiva, Mariane Barros
dc.subject.por.fl_str_mv Classificação
Classification
Complex networks
Decomposição de grafos
Graph decomposition
Graph matrices
Matrizes de grafos
Modelagem
Modeling
Redes complexas
topic Classificação
Classification
Complex networks
Decomposição de grafos
Graph decomposition
Graph matrices
Matrizes de grafos
Modelagem
Modeling
Redes complexas
description Complex networks are essential tools for understanding interconnected systems across various domains. This thesis focuses on the analysis, classification, and modeling of complex networks, aiming to extract meaningful insights using innovative methodologies. The study explores the complex network classification, with a secondary focus on modeling real phenomena in health science and shape analysis. The research objective is to develop novel methodologies surpassing existing network classification techniques. Two key components are investigated: utilizing the adjacency matrix for network analysis and applying multiscale techniques for graph analysis. The investigation of the graph matrices reveals promising results, with node centrality-based ordination and node similarity enhancing image analysis representation. Quantitative analysis on diverse datasets, including real systems, demonstrates satisfactory classification accuracies with low parametrization. Also, computer vision-inspired techniques, such as k-core decomposition and distance transform enhance graph and shape classification. The completion of this PhD in complex networks also explores the ICD-ORPHA network from the Brazilian Ministry of Health. To address the limitations of the ICD-10 system for rare diseases, a specialized medical terminology known as ORPHA is employed, providing a comprehensive nomenclature specifically designed for rare diseases. This research expands the understanding of complex network modeling and its application in the healthcare domain through an interactive web-app system. Furthermore, during the COVID-19 pandemic, a proposed SIR-based model evaluates population dynamics and enhances understanding of the evolution of the pandemic. These methodologies offer valuable tools for public health insights and classification performance improvement. In conclusion, this research advances complex network analysis, classification, and modeling with innovative methodologies. Findings have broad applications across domains, including synthetic and real networks, health data, and shape analysis. The research outcomes offer practical solutions for understanding interconnected systems and contribute to the advancement of complex network analysis.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-03012024-111728/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256626802720768