Modelo GARCH com mudança de regime markoviano para séries financeiras

Detalhes bibliográficos
Autor(a) principal: Rojas Duran, William Gonzalo
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-02072014-122143/
Resumo: Neste trabalho analisaremos a utilização dos modelos de mudança de regime markoviano para a variância condicional. Estes modelos podem estimar de maneira fácil e inteligente a variância condicional não observada em função da variância anterior e do regime. Isso porque, é razoável ter coeficientes variando no tempo dependendo do regime correspondentes à persistência da variância (variância anterior) e às inovações. A noção de que uma série econômica possa ter alguma variação na sua estrutura é antiga para os economistas. Marcucci (2005) comparou diferentes modelos com e sem mudança de regime em termos de sua capacidade para descrever e predizer a volatilidade do mercado de valores dos EUA. O trabalho de Hamilton (1989) foi uns dos mais importantes para o desenvolvimento de modelos com mudança de regime. Inicialmente mostrou que a série do PIB dos EUA pode ser modelada como um processo que tem duas formas diferentes, uma na qual a economia encontra-se em crescimento e a outra durante a recessão. O câmbio de uma fase para outra da economia pode seguir uma cadeia de Markov de primeira ordem. Utilizamos as séries de índice Bovespa e S&P500 entre janeiro de 2003 e abril de 2012 e ajustamos o modelo GARCH(1,1) com mudança de regime seguindo uma cadeia de Markov de primeira ordem, considerando dois regimes. Foram consideradas as distribuições gaussiana, t de Student e generalizada do erro (GED) para modelar as inovações. A distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos se mostrou superior à distribuição normal para caracterizar a distribuição dos retornos em relação ao modelo GARCH com mudança de regime. Além disso, verificou-se um ganho no percentual de cobertura dos intervalos de confiança para a distribuição normal, bem como para a distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos, em relação ao modelo GARCH com mudança de regime quando comparado ao modelo GARCH usual.
id USP_8470ae806cc8943e2845d9f0c3921d8a
oai_identifier_str oai:teses.usp.br:tde-02072014-122143
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelo GARCH com mudança de regime markoviano para séries financeirasMarkov regime switching GARCH model for financial seriesGARCH modelsMarkov regime switchingModelos GARCHMudança de regime markovianoVolatilidadeVolatilityNeste trabalho analisaremos a utilização dos modelos de mudança de regime markoviano para a variância condicional. Estes modelos podem estimar de maneira fácil e inteligente a variância condicional não observada em função da variância anterior e do regime. Isso porque, é razoável ter coeficientes variando no tempo dependendo do regime correspondentes à persistência da variância (variância anterior) e às inovações. A noção de que uma série econômica possa ter alguma variação na sua estrutura é antiga para os economistas. Marcucci (2005) comparou diferentes modelos com e sem mudança de regime em termos de sua capacidade para descrever e predizer a volatilidade do mercado de valores dos EUA. O trabalho de Hamilton (1989) foi uns dos mais importantes para o desenvolvimento de modelos com mudança de regime. Inicialmente mostrou que a série do PIB dos EUA pode ser modelada como um processo que tem duas formas diferentes, uma na qual a economia encontra-se em crescimento e a outra durante a recessão. O câmbio de uma fase para outra da economia pode seguir uma cadeia de Markov de primeira ordem. Utilizamos as séries de índice Bovespa e S&P500 entre janeiro de 2003 e abril de 2012 e ajustamos o modelo GARCH(1,1) com mudança de regime seguindo uma cadeia de Markov de primeira ordem, considerando dois regimes. Foram consideradas as distribuições gaussiana, t de Student e generalizada do erro (GED) para modelar as inovações. A distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos se mostrou superior à distribuição normal para caracterizar a distribuição dos retornos em relação ao modelo GARCH com mudança de regime. Além disso, verificou-se um ganho no percentual de cobertura dos intervalos de confiança para a distribuição normal, bem como para a distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos, em relação ao modelo GARCH com mudança de regime quando comparado ao modelo GARCH usual.In this work we analyze heterocedastic financial data using Markov regime switching models for conditional variance. These models can estimate easily the unobserved conditional variance as function of the previous variance and the regime. It is reasonable to have time-varying coefficients corresponding to the persistence of variance (previous variance) and innovations. The economic series notion may have some variation in their structure is usual for economists. Marcucci (2005) compared different models with and without regime switching in terms of their ability to describe and predict the volatility of the U.S. market. The Hamiltons (1989) work was the most important one in the regime switching models development. Initially showed that the series of U.S. GDP can be modeled as a process that has two different forms one in which the economy is growing and the other during the recession. The change from one phase to another economy can follow a Markov first order chain. We use the Bovespa series index and S&P500 between January 2003 and April 2012 and fitted the GARCH (1,1) models with regime switching following a Markov first order chain, considering two regimes. We considered Gaussian distribution, Student-t and generalized error (GED) to model innovations. The t-Student distribution with the same freedom degree for both regimes and distinct degrees showed higher than normal distribution for characterizing the distribution of returns relative to the GARCH model with regime switching. In addition, there was a gain in the percentage of coverage of the confidence intervals for the normal distribution, as well as the t-Student distribution with the same freedom degree for both regimes and distinct degrees related to GARCH model with regime switching when compared to the usual GARCH model.Biblioteca Digitais de Teses e Dissertações da USPAlencar, Airlane PereiraRojas Duran, William Gonzalo2014-03-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-02072014-122143/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-14T21:56:02Zoai:teses.usp.br:tde-02072014-122143Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-14T21:56:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelo GARCH com mudança de regime markoviano para séries financeiras
Markov regime switching GARCH model for financial series
title Modelo GARCH com mudança de regime markoviano para séries financeiras
spellingShingle Modelo GARCH com mudança de regime markoviano para séries financeiras
Rojas Duran, William Gonzalo
GARCH models
Markov regime switching
Modelos GARCH
Mudança de regime markoviano
Volatilidade
Volatility
title_short Modelo GARCH com mudança de regime markoviano para séries financeiras
title_full Modelo GARCH com mudança de regime markoviano para séries financeiras
title_fullStr Modelo GARCH com mudança de regime markoviano para séries financeiras
title_full_unstemmed Modelo GARCH com mudança de regime markoviano para séries financeiras
title_sort Modelo GARCH com mudança de regime markoviano para séries financeiras
author Rojas Duran, William Gonzalo
author_facet Rojas Duran, William Gonzalo
author_role author
dc.contributor.none.fl_str_mv Alencar, Airlane Pereira
dc.contributor.author.fl_str_mv Rojas Duran, William Gonzalo
dc.subject.por.fl_str_mv GARCH models
Markov regime switching
Modelos GARCH
Mudança de regime markoviano
Volatilidade
Volatility
topic GARCH models
Markov regime switching
Modelos GARCH
Mudança de regime markoviano
Volatilidade
Volatility
description Neste trabalho analisaremos a utilização dos modelos de mudança de regime markoviano para a variância condicional. Estes modelos podem estimar de maneira fácil e inteligente a variância condicional não observada em função da variância anterior e do regime. Isso porque, é razoável ter coeficientes variando no tempo dependendo do regime correspondentes à persistência da variância (variância anterior) e às inovações. A noção de que uma série econômica possa ter alguma variação na sua estrutura é antiga para os economistas. Marcucci (2005) comparou diferentes modelos com e sem mudança de regime em termos de sua capacidade para descrever e predizer a volatilidade do mercado de valores dos EUA. O trabalho de Hamilton (1989) foi uns dos mais importantes para o desenvolvimento de modelos com mudança de regime. Inicialmente mostrou que a série do PIB dos EUA pode ser modelada como um processo que tem duas formas diferentes, uma na qual a economia encontra-se em crescimento e a outra durante a recessão. O câmbio de uma fase para outra da economia pode seguir uma cadeia de Markov de primeira ordem. Utilizamos as séries de índice Bovespa e S&P500 entre janeiro de 2003 e abril de 2012 e ajustamos o modelo GARCH(1,1) com mudança de regime seguindo uma cadeia de Markov de primeira ordem, considerando dois regimes. Foram consideradas as distribuições gaussiana, t de Student e generalizada do erro (GED) para modelar as inovações. A distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos se mostrou superior à distribuição normal para caracterizar a distribuição dos retornos em relação ao modelo GARCH com mudança de regime. Além disso, verificou-se um ganho no percentual de cobertura dos intervalos de confiança para a distribuição normal, bem como para a distribuição t de Student com mesmo grau de liberdade para ambos os regimes e graus distintos, em relação ao modelo GARCH com mudança de regime quando comparado ao modelo GARCH usual.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-02072014-122143/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-02072014-122143/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256609855635456