Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach

Detalhes bibliográficos
Autor(a) principal: Januário, Luara Afonso de Freitas
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/17/17135/tde-05062023-132524/
Resumo: Gastrointestinal nematode infection represents a major threat to the health and productivity of sheep populations, and the Haemonchus contortus is the most pathogenic species. This study analyzed a population of Santa Ines sheep and it was composed of five chapters with the following objectives: Chapter 1) Literature review; Chapter 2) To evaluate the feasibility of using easily-measured phenotypic traits in order to predict the susceptibility of sheep to gastrointestinal nematodes through the use of machine learning methods; Chapter 3) To analyze ocular conjunctiva images to classify anemia levels based on Famacha© scores (FAM); Chapter 4) To examine the additive-genetic patterns of estimated breeding values (EBVs) for indicator traits of resistance to gastrointestinal nematodes; Chapter 5) To assess the accuracy of parametric models (GBLUP, BayesA, BayesB e Bayesian Lasso - BLASSO) and artificial neural networks (BRANN) in genomic predictions of indicator traits of resistance to gastrointestinal nematodes. In the Chapter 2, the animals were classified into resistant, resilient, and susceptible according to fecal egg count (FEC) and packed cell volume (PCV), and the methods were fitted using the information of age class, the month of record, farm, sex, FAM, body weight, and body condition score as predictors. In the Chapter 3, a random forest model (RF) was used to segment the images. After segmentation, the quantiles of color intensity (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99%) in each image channel (red, blue, and green) were determined and used as explanatory variables in the classification models, and the FAM 1 to 5 were the target classes to be predicted. In the Chapter 4, The EBVs for FAM, PCV, and FEC were estimated by Bayesian inference in a single-trait animal model. After, cluster analyses were done using the EBVs for FAM, PCV, and FEC in order to identify animals that are resistant, resilient, and susceptible to gastrointestinal nematodes. In the Chapter 5, the prediction accuracy and mean squared errors were obtained for PCV, FEC, and FAM using parametric models and artificial neural network. The results suggest that the use of easily measurable traits may provide useful information for supporting management decisions at the farm level. The image analysis results indicate that is possible to successfully predict Famacha© score, especially for scores 2 to 4, in sheep via image analysis and RF model using ocular conjunctiva images collected in farm conditions. The resistant cluster presented positive EBVs for PCV and negative for FAM and FEC, being consisted of the most desirable animals to be used as selection candidates in order to genetically improve resistance to gastrointestinal nematodes. In summary, parametric models are suitable for genome-enabled prediction of PCV, FEC and FAM in sheep, due to the small differences in accuracy found between them. Despite this, the use of the GBLUP model is recommended due to its lower computational costs and the possibility of incorporating non-genotyped animals into the analysis using single-step procedures.
id USP_8475ceda178ea80882937ae3f9c2cb66
oai_identifier_str oai:teses.usp.br:tde-05062023-132524
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approachOtimização da resistência a nematódeos gastrointestinais em ovinos Santa Inês: uma abordagem de seleção genômica, machine learning e análise de imagensAnálise de imagemGastrointestinal nematodesGenomic selectionImage analysisMachine learningMachine learningNematódeos gastrointestinaisOvis ariesOvis ariesSeleção genômicaGastrointestinal nematode infection represents a major threat to the health and productivity of sheep populations, and the Haemonchus contortus is the most pathogenic species. This study analyzed a population of Santa Ines sheep and it was composed of five chapters with the following objectives: Chapter 1) Literature review; Chapter 2) To evaluate the feasibility of using easily-measured phenotypic traits in order to predict the susceptibility of sheep to gastrointestinal nematodes through the use of machine learning methods; Chapter 3) To analyze ocular conjunctiva images to classify anemia levels based on Famacha© scores (FAM); Chapter 4) To examine the additive-genetic patterns of estimated breeding values (EBVs) for indicator traits of resistance to gastrointestinal nematodes; Chapter 5) To assess the accuracy of parametric models (GBLUP, BayesA, BayesB e Bayesian Lasso - BLASSO) and artificial neural networks (BRANN) in genomic predictions of indicator traits of resistance to gastrointestinal nematodes. In the Chapter 2, the animals were classified into resistant, resilient, and susceptible according to fecal egg count (FEC) and packed cell volume (PCV), and the methods were fitted using the information of age class, the month of record, farm, sex, FAM, body weight, and body condition score as predictors. In the Chapter 3, a random forest model (RF) was used to segment the images. After segmentation, the quantiles of color intensity (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99%) in each image channel (red, blue, and green) were determined and used as explanatory variables in the classification models, and the FAM 1 to 5 were the target classes to be predicted. In the Chapter 4, The EBVs for FAM, PCV, and FEC were estimated by Bayesian inference in a single-trait animal model. After, cluster analyses were done using the EBVs for FAM, PCV, and FEC in order to identify animals that are resistant, resilient, and susceptible to gastrointestinal nematodes. In the Chapter 5, the prediction accuracy and mean squared errors were obtained for PCV, FEC, and FAM using parametric models and artificial neural network. The results suggest that the use of easily measurable traits may provide useful information for supporting management decisions at the farm level. The image analysis results indicate that is possible to successfully predict Famacha© score, especially for scores 2 to 4, in sheep via image analysis and RF model using ocular conjunctiva images collected in farm conditions. The resistant cluster presented positive EBVs for PCV and negative for FAM and FEC, being consisted of the most desirable animals to be used as selection candidates in order to genetically improve resistance to gastrointestinal nematodes. In summary, parametric models are suitable for genome-enabled prediction of PCV, FEC and FAM in sheep, due to the small differences in accuracy found between them. Despite this, the use of the GBLUP model is recommended due to its lower computational costs and the possibility of incorporating non-genotyped animals into the analysis using single-step procedures.A infecção por nematoides gastrointestinais representa uma grande ameaça à saúde e produtividade das populações de ovinos, sendo o Haemonchus contortus a espécie mais patogênica. Este estudo analisou uma população de ovinos Santa Inês e foi composto por cinco capítulos com os seguintes objetivos: Capítulo 1) Revisão da literatura; Capítulo 2) Avaliar a viabilidade de usar características fenotípicas facilmente mensuráveis, a fim de predizer ovinos susceptíveis a nematoides gastrointestinais por meio do uso de métodos de \"Machine Learning\"; Capítulo 3) Analisar imagens da conjuntiva ocular para classificar os níveis de anemia com base nos escores de Famacha© (FAM); Capítulo 4) Examinar o padrão genético aditivo de valores genéticos estimados (EBVs) para características indicadoras de resistência a nematoides gastrointestinais; Capítulo 5) Avaliar a acurácia de modelos paramétricos (GBLUP, BayesA, BayesB e Lasso Bayesiano - BLASSO) e redes neurais artificiais (BRANN) na predição genômica de características indicadoras de resistência a nematoides gastrointestinais. No Capítulo 2, os animais foram classificados em resistentes, resilientes e suscetíveis de acordo com a contagem de ovos nas fezes (OPG) e volume globular (VG), e os métodos de classificação foram ajustados usando as informações de classe de idade, mês de registro, fazenda, sexo, FAM, peso corporal e escore de condição corporal como preditores. No Capítulo 3, um modelo \"Random Forest\" (RF) foi usado para segmentar as imagens. Após a segmentação, os quantis de intensidade de cor (1, 10, 20, 30, 40, 50, 60, 70, 80, 90 e 99%) em cada canal de imagem (vermelho, azul e verde) foram determinados e usados como variáveis explanatórias nos modelos de classificação, sendo o FAM 1 a 5 as classes a serem previstas. No Capítulo 4, os EBVs para FAM, VG e OPG foram estimados por inferência bayesiana em um modelo animal uni-característico. Em seguida, análises de agrupamento foram realizadas usando os EBVs para FAM, VG e OPG para identificar animais resistentes, resilientes e suscetíveis a nematoides gastrointestinais. No Capítulo 5, a acurácia e o erro de predição foram obtidos para VG, OPG e FAM usando modelos paramétricos e redes neurais artificiais. Os resultados sugerem que o uso de características facilmente mensuráveis pode fornecer informações úteis para apoiar decisões de manejo a nível de fazenda. Os resultados das análises de imagem indicam que é possível prever com sucesso o FAM, especialmente para escores 2 a 4, em ovinos por meio de análise de imagem e modelo de RF usando imagens da conjuntiva ocular coletadas em condições de fazenda. O agrupamento dos animais resistente apresentou EBVs positivos para VG e negativos para FAM e OPG, sendo os animais mais desejáveis para serem usados como candidatos a seleção para melhorar geneticamente a resistência à nematoides gastrointestinais. Em resumo, os modelos paramétricos são adequados para a predição de valores genéticos genômicos de VG, OPG e FAM em ovinos, devido à similaridade da acurácia encontradas entre eles. Apesar disso, o uso do modelo GBLUP é recomendado devido ao seu menor custo computacional e à possibilidade de incorporar animais não genotipados na análise usando procedimentos \"Single-step\".Biblioteca Digitais de Teses e Dissertações da USPPaz, Claudia Cristina Paro deSavegnago, Rodrigo PelicioniJanuário, Luara Afonso de Freitas2023-03-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/17/17135/tde-05062023-132524/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-06-07T15:40:38Zoai:teses.usp.br:tde-05062023-132524Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-06-07T15:40:38Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
Otimização da resistência a nematódeos gastrointestinais em ovinos Santa Inês: uma abordagem de seleção genômica, machine learning e análise de imagens
title Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
spellingShingle Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
Januário, Luara Afonso de Freitas
Análise de imagem
Gastrointestinal nematodes
Genomic selection
Image analysis
Machine learning
Machine learning
Nematódeos gastrointestinais
Ovis aries
Ovis aries
Seleção genômica
title_short Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
title_full Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
title_fullStr Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
title_full_unstemmed Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
title_sort Optimization of resistance to gastrointestinal nematodes in Santa Inês sheep: a genomic selection, machine learning and image analysis approach
author Januário, Luara Afonso de Freitas
author_facet Januário, Luara Afonso de Freitas
author_role author
dc.contributor.none.fl_str_mv Paz, Claudia Cristina Paro de
Savegnago, Rodrigo Pelicioni
dc.contributor.author.fl_str_mv Januário, Luara Afonso de Freitas
dc.subject.por.fl_str_mv Análise de imagem
Gastrointestinal nematodes
Genomic selection
Image analysis
Machine learning
Machine learning
Nematódeos gastrointestinais
Ovis aries
Ovis aries
Seleção genômica
topic Análise de imagem
Gastrointestinal nematodes
Genomic selection
Image analysis
Machine learning
Machine learning
Nematódeos gastrointestinais
Ovis aries
Ovis aries
Seleção genômica
description Gastrointestinal nematode infection represents a major threat to the health and productivity of sheep populations, and the Haemonchus contortus is the most pathogenic species. This study analyzed a population of Santa Ines sheep and it was composed of five chapters with the following objectives: Chapter 1) Literature review; Chapter 2) To evaluate the feasibility of using easily-measured phenotypic traits in order to predict the susceptibility of sheep to gastrointestinal nematodes through the use of machine learning methods; Chapter 3) To analyze ocular conjunctiva images to classify anemia levels based on Famacha© scores (FAM); Chapter 4) To examine the additive-genetic patterns of estimated breeding values (EBVs) for indicator traits of resistance to gastrointestinal nematodes; Chapter 5) To assess the accuracy of parametric models (GBLUP, BayesA, BayesB e Bayesian Lasso - BLASSO) and artificial neural networks (BRANN) in genomic predictions of indicator traits of resistance to gastrointestinal nematodes. In the Chapter 2, the animals were classified into resistant, resilient, and susceptible according to fecal egg count (FEC) and packed cell volume (PCV), and the methods were fitted using the information of age class, the month of record, farm, sex, FAM, body weight, and body condition score as predictors. In the Chapter 3, a random forest model (RF) was used to segment the images. After segmentation, the quantiles of color intensity (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99%) in each image channel (red, blue, and green) were determined and used as explanatory variables in the classification models, and the FAM 1 to 5 were the target classes to be predicted. In the Chapter 4, The EBVs for FAM, PCV, and FEC were estimated by Bayesian inference in a single-trait animal model. After, cluster analyses were done using the EBVs for FAM, PCV, and FEC in order to identify animals that are resistant, resilient, and susceptible to gastrointestinal nematodes. In the Chapter 5, the prediction accuracy and mean squared errors were obtained for PCV, FEC, and FAM using parametric models and artificial neural network. The results suggest that the use of easily measurable traits may provide useful information for supporting management decisions at the farm level. The image analysis results indicate that is possible to successfully predict Famacha© score, especially for scores 2 to 4, in sheep via image analysis and RF model using ocular conjunctiva images collected in farm conditions. The resistant cluster presented positive EBVs for PCV and negative for FAM and FEC, being consisted of the most desirable animals to be used as selection candidates in order to genetically improve resistance to gastrointestinal nematodes. In summary, parametric models are suitable for genome-enabled prediction of PCV, FEC and FAM in sheep, due to the small differences in accuracy found between them. Despite this, the use of the GBLUP model is recommended due to its lower computational costs and the possibility of incorporating non-genotyped animals into the analysis using single-step procedures.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/17/17135/tde-05062023-132524/
url https://www.teses.usp.br/teses/disponiveis/17/17135/tde-05062023-132524/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256696211111936