Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-122351/ |
Resumo: | Define-se a energia de um campo de vetores unitário X numa variedade riemanniana `M POT.N¦como a enerigia da seção X : `M SETA T POT.1 M¦ que determina. No fibrado tangente `T POT.1 M¦ consideramos a métrica de Sasaki. Analogamente, a energia de uma distribuição de dimensão q é a energia da seção no fibrado de q-planos tangentes a M. Os mínimos triviais do funcional energia são os campos paralelos ou as distribuições totalmente geodésicas com complementar também totalmente geodésico. Quando não existem estes campos ou distribuições, como no caso das esferas `S POT.2k+1 K>1¦, estudamos os pontos críticos, mínimos locais e globais do funcional. Para campos de vetores, é apresentado um teorema que dá uma limitação inferior para a soma das energias de n campos ortogonais. Para distribuições conseguimos provar um teorema para variedades quaisquer que aplicado às esferas `S POT.2k+1¦ fornece uma limitação inferior para a energia. Esta cota inferior é atingida pela folheação Norte-Sul (com duas singularidades). Numa análise variacional, mostra-se também que as fibrações de Hopf `S POT.3 SETA S POT.4K+3¦ são pontos críticos instáveis. O volume de um campo de vetores unitário é o volume da imagem da seção correspondente no fibrado tangente unitário, sendo este fibrado munido da métrica de Sasaki. De novo, os campos paralelos são os mínimos triviais. Demonstra-se nesta tese que o volume é limitado inferiormente pela soma, com certos coeficientes combinatórios, das integrais das funções simétricas de ordem 2i da segunda forma fundamental da distribuição complementar ao campo X. Estas integrais resultam ser independentes de X em espaços de curvatura seccional constante. Deste modo conseguimos dizer que nas esferas `S POT.2K+1¦, o volume de um campo unitário é sempre maior que o volume do campo Norte-Sul. O teorema principal do volume é aplicado também a espaços hiperbólicos compactos obtendo assim uma limitação não ) trivial do volume de uma campo unitário |
id |
USP_84c6337512dfcd00be703b4323158f3e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-122351 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitáriosnot availableEspaços HiperbólicosGeometria DiferencialDefine-se a energia de um campo de vetores unitário X numa variedade riemanniana `M POT.N¦como a enerigia da seção X : `M SETA T POT.1 M¦ que determina. No fibrado tangente `T POT.1 M¦ consideramos a métrica de Sasaki. Analogamente, a energia de uma distribuição de dimensão q é a energia da seção no fibrado de q-planos tangentes a M. Os mínimos triviais do funcional energia são os campos paralelos ou as distribuições totalmente geodésicas com complementar também totalmente geodésico. Quando não existem estes campos ou distribuições, como no caso das esferas `S POT.2k+1 K>1¦, estudamos os pontos críticos, mínimos locais e globais do funcional. Para campos de vetores, é apresentado um teorema que dá uma limitação inferior para a soma das energias de n campos ortogonais. Para distribuições conseguimos provar um teorema para variedades quaisquer que aplicado às esferas `S POT.2k+1¦ fornece uma limitação inferior para a energia. Esta cota inferior é atingida pela folheação Norte-Sul (com duas singularidades). Numa análise variacional, mostra-se também que as fibrações de Hopf `S POT.3 SETA S POT.4K+3¦ são pontos críticos instáveis. O volume de um campo de vetores unitário é o volume da imagem da seção correspondente no fibrado tangente unitário, sendo este fibrado munido da métrica de Sasaki. De novo, os campos paralelos são os mínimos triviais. Demonstra-se nesta tese que o volume é limitado inferiormente pela soma, com certos coeficientes combinatórios, das integrais das funções simétricas de ordem 2i da segunda forma fundamental da distribuição complementar ao campo X. Estas integrais resultam ser independentes de X em espaços de curvatura seccional constante. Deste modo conseguimos dizer que nas esferas `S POT.2K+1¦, o volume de um campo unitário é sempre maior que o volume do campo Norte-Sul. O teorema principal do volume é aplicado também a espaços hiperbólicos compactos obtendo assim uma limitação não ) trivial do volume de uma campo unitárioIf X is a unit vector field on a Riemannian manifold `M POT.n¦, its energy is defined as the energy of the section X :M SETA T POT.1 M¦it determines.On the tangent bundle `T POT.1 M¦ we consider the Sasaki metric. Similary, the energy of a distribution of dimension q is the energy of the corresponding section of the bundle of q-planes tangents to M. The trivial minima of the energy functional are the parallel fields or the totally geodesic distributions with also totally geodesic complement. When these fields or distributions do not exist, as in the case for spheres `S POT.2K+1¦, K>1, we study the critical points, local and global minima of the functional. For vector fields we present a theorem giving a lower bound for the sum of the energies of n orthogonal fields. For distributions, we obtained a theorem on aaarbitrary manifolds which provides, when applied to spheres `S POT.2K+1¦ a lower bound for the energy functional. This lower bound is attained by the North-South foliation (with two singularities). We also show, with a variational analysis of the energy, that the Hopf fibrations `S POT.3 SETA S POT.4K+3 are unstable critical points. The volume of a unit vector field is the volume of the image of the corresponding section of the unit tangent bundle, for the Sasaki metric. Again, the parallel fields are the trivial minima. In this work, we prove that a lower bound for this volume is the sum, with certain combinatory coefficients, of the integrals of the 2i symmetric functions of the second fundamental form of the orthogonal distribution to the field X.It turns out that these integrals are independents of X in spaces of constant sectional curvature. So, we may say that in the spheres `S POT.2K+1¦ the volme of a vector field is always greater than the volume of the North-South field.The main theorem on volumes is applied also to hyperbolic compact spaces, giving a non-trivial lower bound of the volume of unit fieldsBiblioteca Digitais de Teses e Dissertações da USPBrito, Fabiano Gustavo BragaMartín, Pablo Miguel Chacón2000-08-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-122351/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2021-07-31T19:03:58Zoai:teses.usp.br:tde-20210729-122351Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212021-07-31T19:03:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários not available |
title |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários |
spellingShingle |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários Martín, Pablo Miguel Chacón Espaços Hiperbólicos Geometria Diferencial |
title_short |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários |
title_full |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários |
title_fullStr |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários |
title_full_unstemmed |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários |
title_sort |
Sobre a energia e energia corrigida de campos unitários e distribuições: volume de campos unitários |
author |
Martín, Pablo Miguel Chacón |
author_facet |
Martín, Pablo Miguel Chacón |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brito, Fabiano Gustavo Braga |
dc.contributor.author.fl_str_mv |
Martín, Pablo Miguel Chacón |
dc.subject.por.fl_str_mv |
Espaços Hiperbólicos Geometria Diferencial |
topic |
Espaços Hiperbólicos Geometria Diferencial |
description |
Define-se a energia de um campo de vetores unitário X numa variedade riemanniana `M POT.N¦como a enerigia da seção X : `M SETA T POT.1 M¦ que determina. No fibrado tangente `T POT.1 M¦ consideramos a métrica de Sasaki. Analogamente, a energia de uma distribuição de dimensão q é a energia da seção no fibrado de q-planos tangentes a M. Os mínimos triviais do funcional energia são os campos paralelos ou as distribuições totalmente geodésicas com complementar também totalmente geodésico. Quando não existem estes campos ou distribuições, como no caso das esferas `S POT.2k+1 K>1¦, estudamos os pontos críticos, mínimos locais e globais do funcional. Para campos de vetores, é apresentado um teorema que dá uma limitação inferior para a soma das energias de n campos ortogonais. Para distribuições conseguimos provar um teorema para variedades quaisquer que aplicado às esferas `S POT.2k+1¦ fornece uma limitação inferior para a energia. Esta cota inferior é atingida pela folheação Norte-Sul (com duas singularidades). Numa análise variacional, mostra-se também que as fibrações de Hopf `S POT.3 SETA S POT.4K+3¦ são pontos críticos instáveis. O volume de um campo de vetores unitário é o volume da imagem da seção correspondente no fibrado tangente unitário, sendo este fibrado munido da métrica de Sasaki. De novo, os campos paralelos são os mínimos triviais. Demonstra-se nesta tese que o volume é limitado inferiormente pela soma, com certos coeficientes combinatórios, das integrais das funções simétricas de ordem 2i da segunda forma fundamental da distribuição complementar ao campo X. Estas integrais resultam ser independentes de X em espaços de curvatura seccional constante. Deste modo conseguimos dizer que nas esferas `S POT.2K+1¦, o volume de um campo unitário é sempre maior que o volume do campo Norte-Sul. O teorema principal do volume é aplicado também a espaços hiperbólicos compactos obtendo assim uma limitação não ) trivial do volume de uma campo unitário |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-08-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-122351/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-122351/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257208263278592 |