Análise Bayesiana de modelos de mistura finita com dados censurados

Detalhes bibliográficos
Autor(a) principal: Melo, Brian Alvarez Ribeiro de
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-11052017-163847/
Resumo: Misturas finitas são modelos paramétricos altamente flexíveis, capazes de descrever diferentes características dos dados em vários contextos, especialmente na análise de dados heterogêneos (Marin, 2005). Geralmente, nos modelos de mistura finita, todas as componentes pertencem à mesma família paramétrica e são diferenciadas apenas pelo vetor de parâmetros associado a essas componentes. Neste trabalho, propomos um novo modelo de mistura finita, capaz de acomodar observações censuradas, no qual as componentes são as densidades das distribuições Gama, Lognormal e Weibull (mistura GLW). Essas densidades são reparametrizadas, sendo reescritas em função da média e da variância, uma vez que estas quantidades são mais difundidas em diversas áreas de estudo. Assim, construímos o modelo GLW e desenvolvemos a análise de tal modelo sob a perspectiva bayesiana de inferência. Essa análise inclui a estimação, através de métodos de simulação, dos parâmetros de interesse em cenários com censura e com fração de cura, a construção de testes de hipóteses para avaliar efeitos de covariáveis e pesos da mistura, o cálculo de medidas para comparação de diferentes modelos e estimação da distribuição preditiva de novas observações. Através de um estudo de simulação, avaliamos a capacidade da mistura GLW em recuperar a distribuição original dos tempos de falha utilizando testes de hipóteses e estimativas do modelo. Os modelos desenvolvidos também foram aplicados no estudo do tempo de seguimento de pacientes com insuficiência cardíaca do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Nesta aplicação, os resultados mostram uma melhor adequação dos modelos de mistura em relação à utilização de apenas uma distribuição na modelagem dos tempos de seguimentos. Por fim, desenvolvemos um pacote para o ajuste dos modelos apresentados no software R.
id USP_85b02850572472f820b18360b99ab1bf
oai_identifier_str oai:teses.usp.br:tde-11052017-163847
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Análise Bayesiana de modelos de mistura finita com dados censuradosBayesian analysis of finite mixture models with censored dataAnálise de sobrevivênciaBayesian inferenceFinite mixturesHypothesis testingInferência bayesianaMistura finitaModel selectionSeleção de modelosSurvival analysisTeste de hipótesesMisturas finitas são modelos paramétricos altamente flexíveis, capazes de descrever diferentes características dos dados em vários contextos, especialmente na análise de dados heterogêneos (Marin, 2005). Geralmente, nos modelos de mistura finita, todas as componentes pertencem à mesma família paramétrica e são diferenciadas apenas pelo vetor de parâmetros associado a essas componentes. Neste trabalho, propomos um novo modelo de mistura finita, capaz de acomodar observações censuradas, no qual as componentes são as densidades das distribuições Gama, Lognormal e Weibull (mistura GLW). Essas densidades são reparametrizadas, sendo reescritas em função da média e da variância, uma vez que estas quantidades são mais difundidas em diversas áreas de estudo. Assim, construímos o modelo GLW e desenvolvemos a análise de tal modelo sob a perspectiva bayesiana de inferência. Essa análise inclui a estimação, através de métodos de simulação, dos parâmetros de interesse em cenários com censura e com fração de cura, a construção de testes de hipóteses para avaliar efeitos de covariáveis e pesos da mistura, o cálculo de medidas para comparação de diferentes modelos e estimação da distribuição preditiva de novas observações. Através de um estudo de simulação, avaliamos a capacidade da mistura GLW em recuperar a distribuição original dos tempos de falha utilizando testes de hipóteses e estimativas do modelo. Os modelos desenvolvidos também foram aplicados no estudo do tempo de seguimento de pacientes com insuficiência cardíaca do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Nesta aplicação, os resultados mostram uma melhor adequação dos modelos de mistura em relação à utilização de apenas uma distribuição na modelagem dos tempos de seguimentos. Por fim, desenvolvemos um pacote para o ajuste dos modelos apresentados no software R.Finite mixtures are highly flexible parametric models capable of describing different data features and are widely considered in many contexts, especially in the analysis of heterogeneous data (Marin, 2005). Generally, in finite mixture models, all the components belong to the same parametric family and are only distinguished by the associated parameter vector. In this thesis, we propose a new finite mixture model, capable of handling censored observations, in which the components are the densities from the Gama, Lognormal and Weibull distributions (the GLW finite mixture). These densities are rewritten in such a way that the mean and the variance are the parameters, since the interpretation of such quantities is widespread in various areas of study. In short, we constructed the GLW model and developed its analysis under the bayesian perspective of inference considering scenarios with censorship and cure rate. This analysis includes the parameter estimation, wich is made through simulation methods, construction of hypothesis testing to evaluate covariate effects and to assess the values of the mixture weights, computatution of model adequability measures, which are used to compare different models and estimation of the predictive distribution for new observations. In a simulation study, we evaluated the feasibility of the GLW mixture to recover the original distribution of failure times using hypothesis testing and some model estimated quantities as criteria for selecting the correct distribution. The models developed were applied in the study of the follow-up time of patients with heart failure from the Heart Institute of the University of Sao Paulo Medical School. In this application, results show a better fit of mixture models, in relation to the use of only one distribution in the modeling of the failure times. Finally, we developed a package for the adjustment of the presented models in software R.Biblioteca Digitais de Teses e Dissertações da USPEsteves, Luís GustavoMelo, Brian Alvarez Ribeiro de2017-02-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45133/tde-11052017-163847/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-15T15:13:02Zoai:teses.usp.br:tde-11052017-163847Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-15T15:13:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Análise Bayesiana de modelos de mistura finita com dados censurados
Bayesian analysis of finite mixture models with censored data
title Análise Bayesiana de modelos de mistura finita com dados censurados
spellingShingle Análise Bayesiana de modelos de mistura finita com dados censurados
Melo, Brian Alvarez Ribeiro de
Análise de sobrevivência
Bayesian inference
Finite mixtures
Hypothesis testing
Inferência bayesiana
Mistura finita
Model selection
Seleção de modelos
Survival analysis
Teste de hipóteses
title_short Análise Bayesiana de modelos de mistura finita com dados censurados
title_full Análise Bayesiana de modelos de mistura finita com dados censurados
title_fullStr Análise Bayesiana de modelos de mistura finita com dados censurados
title_full_unstemmed Análise Bayesiana de modelos de mistura finita com dados censurados
title_sort Análise Bayesiana de modelos de mistura finita com dados censurados
author Melo, Brian Alvarez Ribeiro de
author_facet Melo, Brian Alvarez Ribeiro de
author_role author
dc.contributor.none.fl_str_mv Esteves, Luís Gustavo
dc.contributor.author.fl_str_mv Melo, Brian Alvarez Ribeiro de
dc.subject.por.fl_str_mv Análise de sobrevivência
Bayesian inference
Finite mixtures
Hypothesis testing
Inferência bayesiana
Mistura finita
Model selection
Seleção de modelos
Survival analysis
Teste de hipóteses
topic Análise de sobrevivência
Bayesian inference
Finite mixtures
Hypothesis testing
Inferência bayesiana
Mistura finita
Model selection
Seleção de modelos
Survival analysis
Teste de hipóteses
description Misturas finitas são modelos paramétricos altamente flexíveis, capazes de descrever diferentes características dos dados em vários contextos, especialmente na análise de dados heterogêneos (Marin, 2005). Geralmente, nos modelos de mistura finita, todas as componentes pertencem à mesma família paramétrica e são diferenciadas apenas pelo vetor de parâmetros associado a essas componentes. Neste trabalho, propomos um novo modelo de mistura finita, capaz de acomodar observações censuradas, no qual as componentes são as densidades das distribuições Gama, Lognormal e Weibull (mistura GLW). Essas densidades são reparametrizadas, sendo reescritas em função da média e da variância, uma vez que estas quantidades são mais difundidas em diversas áreas de estudo. Assim, construímos o modelo GLW e desenvolvemos a análise de tal modelo sob a perspectiva bayesiana de inferência. Essa análise inclui a estimação, através de métodos de simulação, dos parâmetros de interesse em cenários com censura e com fração de cura, a construção de testes de hipóteses para avaliar efeitos de covariáveis e pesos da mistura, o cálculo de medidas para comparação de diferentes modelos e estimação da distribuição preditiva de novas observações. Através de um estudo de simulação, avaliamos a capacidade da mistura GLW em recuperar a distribuição original dos tempos de falha utilizando testes de hipóteses e estimativas do modelo. Os modelos desenvolvidos também foram aplicados no estudo do tempo de seguimento de pacientes com insuficiência cardíaca do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo. Nesta aplicação, os resultados mostram uma melhor adequação dos modelos de mistura em relação à utilização de apenas uma distribuição na modelagem dos tempos de seguimentos. Por fim, desenvolvemos um pacote para o ajuste dos modelos apresentados no software R.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45133/tde-11052017-163847/
url http://www.teses.usp.br/teses/disponiveis/45/45133/tde-11052017-163847/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1809090615646879744