Nonparametric pragmatic hypothesis testing
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/104/104131/tde-18112022-174413/ |
Resumo: | In statistical testing, a pragmatic hypothesis is an extension of a precise one, taking cases on the vicinity of the null as being equally worthy of appraisal. Unlike standard procedures, pragmatic hypotheses allow the user to evaluate more relevant assumptions and, at the same time, provide strategies to tackle Big Data responsibly, avoiding common drawbacks. However, up until now, these procedures have been applied only when a parametric family is assumed for the data. In this masters thesis, we explore pragmatic hypotheses in a nonparametric setting, which drastically reduces the number of presuppositions and provides more realistic scenarios. By expanding the theory in Coscrato et al. (2019) to a nonparametric context, we delimit the different types of precise hypotheses of interest and the respective challenges each of them presents. Then, we derive two kinds of tests for nonparametric pragmatic hypotheses: one that adheres to standard procedures and one that is agnostic (which accepts, rejects or remains undecided on a given hypothesis), both obeying the property of monotonicity. Lastly, we use the Pólya tree process for building tests in a multitude of applications, showing how sample size, confidence/credible levels and the threshold of a pragmatic hypothesis impact the decision of the test. |
id |
USP_8cdfabda62d84957e8b1f97f240bb623 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18112022-174413 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Nonparametric pragmatic hypothesis testingTestagem não-paramétrica de hipóteses pragmáticasAgnostic testsBayesian nonparametricsBayesiana não-paramétricaDissimilarity functionFunção de dissimilaridadeHipóteses pragmáticasPragmatic hypothesesTestes agnósticosIn statistical testing, a pragmatic hypothesis is an extension of a precise one, taking cases on the vicinity of the null as being equally worthy of appraisal. Unlike standard procedures, pragmatic hypotheses allow the user to evaluate more relevant assumptions and, at the same time, provide strategies to tackle Big Data responsibly, avoiding common drawbacks. However, up until now, these procedures have been applied only when a parametric family is assumed for the data. In this masters thesis, we explore pragmatic hypotheses in a nonparametric setting, which drastically reduces the number of presuppositions and provides more realistic scenarios. By expanding the theory in Coscrato et al. (2019) to a nonparametric context, we delimit the different types of precise hypotheses of interest and the respective challenges each of them presents. Then, we derive two kinds of tests for nonparametric pragmatic hypotheses: one that adheres to standard procedures and one that is agnostic (which accepts, rejects or remains undecided on a given hypothesis), both obeying the property of monotonicity. Lastly, we use the Pólya tree process for building tests in a multitude of applications, showing how sample size, confidence/credible levels and the threshold of a pragmatic hypothesis impact the decision of the test.Na área de testagem estatística, uma hipótese pragmática amplia uma hipótese precisa, tomando casos na vizinhança da nula como sendo tão merecedores de consideração quanto ela. Ao contrário dos métodos tradicionais, hipóteses pragmáticas permitem ao usuário avaliar suposições mais relevantes e, simultaneamente, fornecem estratégias para lidar com Big Data de forma responsável, evitando complicadores usuais. Contudo, até o presente momento, tais procedimentos só foram aplicados em casos que já supõem uma família paramétrica para os dados. Nesta dissertação de mestrado, nós exploramos hipóteses pragmáticas em um contexto não-paramétrico, o que reduz drasticamente o número de suposições e fornece cenários mais realistas. Ao expandir a teoria em Coscrato et al. (2019) para um contexto não-paramétrico, delimitamos os diferentes tipos de hipóteses precisas de interesse, assim como os respectivos desafios que cada uma delas apresenta. Daí, derivamos dois tipos de testes para hipóteses não-paramétricas: um que adere aos procedimentos usuais e um que é agnóstico (que aceita, rejeita ou mantém a indecisão a respeito de uma hipótese específica), sendo que ambos seguem a propriedade de monotonicidade. Ao final, utilizamos o processo da árvore de Pólya para construir testes em múltiplas aplicações, demonstrando como o tamanho da amostra, níveis de confiança/credibilidade e o limiar de uma hipótese pragmática impactam na decisão do teste.Biblioteca Digitais de Teses e Dissertações da USPStern, Rafael BassiLassance, Rodrigo Ferrari Lucas2022-06-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-18112022-174413/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-11-18T19:49:11Zoai:teses.usp.br:tde-18112022-174413Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-11-18T19:49:11Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Nonparametric pragmatic hypothesis testing Testagem não-paramétrica de hipóteses pragmáticas |
title |
Nonparametric pragmatic hypothesis testing |
spellingShingle |
Nonparametric pragmatic hypothesis testing Lassance, Rodrigo Ferrari Lucas Agnostic tests Bayesian nonparametrics Bayesiana não-paramétrica Dissimilarity function Função de dissimilaridade Hipóteses pragmáticas Pragmatic hypotheses Testes agnósticos |
title_short |
Nonparametric pragmatic hypothesis testing |
title_full |
Nonparametric pragmatic hypothesis testing |
title_fullStr |
Nonparametric pragmatic hypothesis testing |
title_full_unstemmed |
Nonparametric pragmatic hypothesis testing |
title_sort |
Nonparametric pragmatic hypothesis testing |
author |
Lassance, Rodrigo Ferrari Lucas |
author_facet |
Lassance, Rodrigo Ferrari Lucas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Stern, Rafael Bassi |
dc.contributor.author.fl_str_mv |
Lassance, Rodrigo Ferrari Lucas |
dc.subject.por.fl_str_mv |
Agnostic tests Bayesian nonparametrics Bayesiana não-paramétrica Dissimilarity function Função de dissimilaridade Hipóteses pragmáticas Pragmatic hypotheses Testes agnósticos |
topic |
Agnostic tests Bayesian nonparametrics Bayesiana não-paramétrica Dissimilarity function Função de dissimilaridade Hipóteses pragmáticas Pragmatic hypotheses Testes agnósticos |
description |
In statistical testing, a pragmatic hypothesis is an extension of a precise one, taking cases on the vicinity of the null as being equally worthy of appraisal. Unlike standard procedures, pragmatic hypotheses allow the user to evaluate more relevant assumptions and, at the same time, provide strategies to tackle Big Data responsibly, avoiding common drawbacks. However, up until now, these procedures have been applied only when a parametric family is assumed for the data. In this masters thesis, we explore pragmatic hypotheses in a nonparametric setting, which drastically reduces the number of presuppositions and provides more realistic scenarios. By expanding the theory in Coscrato et al. (2019) to a nonparametric context, we delimit the different types of precise hypotheses of interest and the respective challenges each of them presents. Then, we derive two kinds of tests for nonparametric pragmatic hypotheses: one that adheres to standard procedures and one that is agnostic (which accepts, rejects or remains undecided on a given hypothesis), both obeying the property of monotonicity. Lastly, we use the Pólya tree process for building tests in a multitude of applications, showing how sample size, confidence/credible levels and the threshold of a pragmatic hypothesis impact the decision of the test. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-18112022-174413/ |
url |
https://www.teses.usp.br/teses/disponiveis/104/104131/tde-18112022-174413/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257118293360640 |