Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/12/12138/tde-30062023-162456/ |
Resumo: | O objetivo deste trabalho é duplo. Em primeira instância, testamos, pela primeira vez em trabalho aplicado de finanças, a sequência de Niederreiter- Xing em simulação quase Monte-Cario. De acordo com medidas de dispersão, a sequência de Niederreiter-Xing deve apresentar desempenho superior as construções clássicas de Sobol e Halton. Espera-se assim atenuar os problemas apresentados por estas quando cresce a dimensão das simulações. Em segunda instância aplicamos o método de quase Monte-Carlo ao cálculo de exposição a risco de mercado de um portfólio de opções (VaR). Acreditamos que este seja o campo mais fértil a aplicação da simulação quase Monte-Carlo no mercado financeiro brasileiro. Após uma breve introdução a simulação Monte-Carlo e a construção de sequências quase-aleatórias, efetuaremos uma resenha dos principais trabalhos que tratam do método quase Monte-Carlo em finanças. Finalmente apresentaremos os resultados obtidos em nossos experimentos. Estes incluem o cálculo de VaR de um portfólio de opções e precificações de opções exóticas. Uma apresentação formal das sequências quase-aleatórias e de suas principais propriedades matemáticas encontrar-se em apêndice |
id |
USP_8dd2cf0406ef84c584873925e418df46 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-30062023-162456 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiroQuasi-Monte-Carlo applications in the Brazilian derivatives marketControle de riscoDerivativesDerivativosFinançasFinanceMonte Carlo SimulationRisk ControlSimulação Monte CarloO objetivo deste trabalho é duplo. Em primeira instância, testamos, pela primeira vez em trabalho aplicado de finanças, a sequência de Niederreiter- Xing em simulação quase Monte-Cario. De acordo com medidas de dispersão, a sequência de Niederreiter-Xing deve apresentar desempenho superior as construções clássicas de Sobol e Halton. Espera-se assim atenuar os problemas apresentados por estas quando cresce a dimensão das simulações. Em segunda instância aplicamos o método de quase Monte-Carlo ao cálculo de exposição a risco de mercado de um portfólio de opções (VaR). Acreditamos que este seja o campo mais fértil a aplicação da simulação quase Monte-Carlo no mercado financeiro brasileiro. Após uma breve introdução a simulação Monte-Carlo e a construção de sequências quase-aleatórias, efetuaremos uma resenha dos principais trabalhos que tratam do método quase Monte-Carlo em finanças. Finalmente apresentaremos os resultados obtidos em nossos experimentos. Estes incluem o cálculo de VaR de um portfólio de opções e precificações de opções exóticas. Uma apresentação formal das sequências quase-aleatórias e de suas principais propriedades matemáticas encontrar-se em apêndiceThis dissertation has two purposes. One of them is to test, for the first time in applied finance, the Niederreiter-Xing low-discrepancy sequence in a quasi Monte-carlo setting. According to uniformity criteria the Niederreiter-Xing sequence should exhibit superior performance when compared to classical constructions such as those of Sobol and Halton. It is well known that, as the dimension of the simulation increases, quasi Monte-Carlo with these sequences becomes inacurate. We hope the Niederreiter-Xing sequence attenuates this problem. The other is to apply quasi Monte-Carlo in the calculation of market risk exposure of a portfolio which includes options. We believe this application to be the most fertile ground for quasi Montecarlo in the Brazilian financial market. Following a brief introduction on Monte-Carlo methods and guidelines on how to implement low-discrepancy sequences we will give a detailed account of the findings obtained in research thus far. Finally we show the resulta of our investigations, which include the VaR of portfolios consisting of options and the pricing of exotic options. A more rigourous presentation of low-discrepancy sequences and their main mathematical properties is given in appendixBiblioteca Digitais de Teses e Dissertações da USPSilva, Marcos Eugenio daBarbe, Thierry2001-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/12/12138/tde-30062023-162456/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2023-06-30T21:30:23Zoai:teses.usp.br:tde-30062023-162456Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-06-30T21:30:23Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro Quasi-Monte-Carlo applications in the Brazilian derivatives market |
title |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro |
spellingShingle |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro Barbe, Thierry Controle de risco Derivatives Derivativos Finanças Finance Monte Carlo Simulation Risk Control Simulação Monte Carlo |
title_short |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro |
title_full |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro |
title_fullStr |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro |
title_full_unstemmed |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro |
title_sort |
Aplicações de quase Monte-Carlo no mercado de derivativos brasileiro |
author |
Barbe, Thierry |
author_facet |
Barbe, Thierry |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Marcos Eugenio da |
dc.contributor.author.fl_str_mv |
Barbe, Thierry |
dc.subject.por.fl_str_mv |
Controle de risco Derivatives Derivativos Finanças Finance Monte Carlo Simulation Risk Control Simulação Monte Carlo |
topic |
Controle de risco Derivatives Derivativos Finanças Finance Monte Carlo Simulation Risk Control Simulação Monte Carlo |
description |
O objetivo deste trabalho é duplo. Em primeira instância, testamos, pela primeira vez em trabalho aplicado de finanças, a sequência de Niederreiter- Xing em simulação quase Monte-Cario. De acordo com medidas de dispersão, a sequência de Niederreiter-Xing deve apresentar desempenho superior as construções clássicas de Sobol e Halton. Espera-se assim atenuar os problemas apresentados por estas quando cresce a dimensão das simulações. Em segunda instância aplicamos o método de quase Monte-Carlo ao cálculo de exposição a risco de mercado de um portfólio de opções (VaR). Acreditamos que este seja o campo mais fértil a aplicação da simulação quase Monte-Carlo no mercado financeiro brasileiro. Após uma breve introdução a simulação Monte-Carlo e a construção de sequências quase-aleatórias, efetuaremos uma resenha dos principais trabalhos que tratam do método quase Monte-Carlo em finanças. Finalmente apresentaremos os resultados obtidos em nossos experimentos. Estes incluem o cálculo de VaR de um portfólio de opções e precificações de opções exóticas. Uma apresentação formal das sequências quase-aleatórias e de suas principais propriedades matemáticas encontrar-se em apêndice |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/12/12138/tde-30062023-162456/ |
url |
https://www.teses.usp.br/teses/disponiveis/12/12138/tde-30062023-162456/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257503481462784 |