Bott\'s periodicity theorem from the algebraic topology viewpoint
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-17112017-130250/ |
Resumo: | In 1970, Raoul Bott published The Periodicity Theorem for the Classical Groups and Some of Its Applications, in which he uses this famous result as a guideline to present some important areas and tools of Algebraic Topology. This dissertation aims to use the path Bott presented in his article as a guideline to address certain topics on Algebraic Topology. We start this incursion developing important tools used in Homotopy Theory such as spectral sequences and Eilenberg-MacLane spaces, exploring how they can be combined to aid in computation of homotopy groups. We then study important results of Morse Theory, a tool which was in the centre of Botts proof of the Periodicity Theorem. We also develop two extensions: Morse-Bott Theory, and the applications of such results to the loopspace of a manifold. We end by giving an introduction to generalised cohomology theories and K-Theory. |
id |
USP_91d597ad16150f42b784d58c63d10c65 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-17112017-130250 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Bott\'s periodicity theorem from the algebraic topology viewpointO teorema da periodicidade de Bott sob o olhar da topologia algébricaBotts periodicity theoremCohomologia generalizadaEilenberg-MacLane spacesEspaços de Eilenberg-MacLaneGeneralised cohomologyHomotopy theoryK-TeoriaK-TheoryMorse theoryMorse-Bott theorySequências espectraisSpectral sequencesTeorema da periodicidade de BottTeoria de homotopiaTeoria de MorseTeoria de Morse-BottIn 1970, Raoul Bott published The Periodicity Theorem for the Classical Groups and Some of Its Applications, in which he uses this famous result as a guideline to present some important areas and tools of Algebraic Topology. This dissertation aims to use the path Bott presented in his article as a guideline to address certain topics on Algebraic Topology. We start this incursion developing important tools used in Homotopy Theory such as spectral sequences and Eilenberg-MacLane spaces, exploring how they can be combined to aid in computation of homotopy groups. We then study important results of Morse Theory, a tool which was in the centre of Botts proof of the Periodicity Theorem. We also develop two extensions: Morse-Bott Theory, and the applications of such results to the loopspace of a manifold. We end by giving an introduction to generalised cohomology theories and K-Theory.Em 1970, Raoul Bott publicou o artigo The Periodicity Theorem for the Classical Groups and Some of Its Applications no qual usava esse famoso resultado como um guia para apresentar importantes áreas e ferramentas da Topologia Algébrica. O presente trabalho usa o mesmo caminho traçado por Bott em seu artigo como roteiro para explorar tópicos importantes da Topologia Algébrica. Começamos esta incursão desenvolvendo ferramentas importantes da Teoria de Homotopia como sequências espectrais e espaços de Eilenberg-MacLane, explorando como estes podem ser combinados para auxiliar em cálculos de grupos de homotopia. Passamos então a estudar resultados importantes de Teoria de Morse, uma ferramenta que estava no centro da demonstração de Bott do Teorema da Periodicidade. Desenvolvemos ainda, duas extensões: Teoria de Morse-Bott e aplicações destes resultados ao espaço de laços de uma variedade. Terminamos com uma introdução a teorias de cohomologia generalizadas e K-Teoria.Biblioteca Digitais de Teses e Dissertações da USPStruchiner, IvanBonatto, Luciana Basualdo2017-08-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-17112017-130250/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-17T16:38:18Zoai:teses.usp.br:tde-17112017-130250Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-17T16:38:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Bott\'s periodicity theorem from the algebraic topology viewpoint O teorema da periodicidade de Bott sob o olhar da topologia algébrica |
title |
Bott\'s periodicity theorem from the algebraic topology viewpoint |
spellingShingle |
Bott\'s periodicity theorem from the algebraic topology viewpoint Bonatto, Luciana Basualdo Botts periodicity theorem Cohomologia generalizada Eilenberg-MacLane spaces Espaços de Eilenberg-MacLane Generalised cohomology Homotopy theory K-Teoria K-Theory Morse theory Morse-Bott theory Sequências espectrais Spectral sequences Teorema da periodicidade de Bott Teoria de homotopia Teoria de Morse Teoria de Morse-Bott |
title_short |
Bott\'s periodicity theorem from the algebraic topology viewpoint |
title_full |
Bott\'s periodicity theorem from the algebraic topology viewpoint |
title_fullStr |
Bott\'s periodicity theorem from the algebraic topology viewpoint |
title_full_unstemmed |
Bott\'s periodicity theorem from the algebraic topology viewpoint |
title_sort |
Bott\'s periodicity theorem from the algebraic topology viewpoint |
author |
Bonatto, Luciana Basualdo |
author_facet |
Bonatto, Luciana Basualdo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Struchiner, Ivan |
dc.contributor.author.fl_str_mv |
Bonatto, Luciana Basualdo |
dc.subject.por.fl_str_mv |
Botts periodicity theorem Cohomologia generalizada Eilenberg-MacLane spaces Espaços de Eilenberg-MacLane Generalised cohomology Homotopy theory K-Teoria K-Theory Morse theory Morse-Bott theory Sequências espectrais Spectral sequences Teorema da periodicidade de Bott Teoria de homotopia Teoria de Morse Teoria de Morse-Bott |
topic |
Botts periodicity theorem Cohomologia generalizada Eilenberg-MacLane spaces Espaços de Eilenberg-MacLane Generalised cohomology Homotopy theory K-Teoria K-Theory Morse theory Morse-Bott theory Sequências espectrais Spectral sequences Teorema da periodicidade de Bott Teoria de homotopia Teoria de Morse Teoria de Morse-Bott |
description |
In 1970, Raoul Bott published The Periodicity Theorem for the Classical Groups and Some of Its Applications, in which he uses this famous result as a guideline to present some important areas and tools of Algebraic Topology. This dissertation aims to use the path Bott presented in his article as a guideline to address certain topics on Algebraic Topology. We start this incursion developing important tools used in Homotopy Theory such as spectral sequences and Eilenberg-MacLane spaces, exploring how they can be combined to aid in computation of homotopy groups. We then study important results of Morse Theory, a tool which was in the centre of Botts proof of the Periodicity Theorem. We also develop two extensions: Morse-Bott Theory, and the applications of such results to the loopspace of a manifold. We end by giving an introduction to generalised cohomology theories and K-Theory. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-17112017-130250/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-17112017-130250/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257054293524480 |