Atribuição de autoria em dados temporais utilizando a rede social Reddit
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://www.teses.usp.br/teses/disponiveis/100/100131/tde-07122022-220517/ |
Resumo: | A praticidade trazida pelo uso dos smartphones resultou, nos últimos anos, em uma maior interação através das redes sociais online. As redes sociais podem influenciar tanto positivamente quanto negativamente os usuários, sendo um dos impactos negativos a propagação de notícias falsas. Neste contexto, identificar a correta fonte de uma informação ou se a informação é verídica se tornam atividades extremamente relevantes. Desde 2009 o número de trabalhos envolvendo redes sociais online e análise de autoria tem aumentado. O presente projeto tem como objetivo utilizar os comentários da rede social Reddit, em conjunto com dados da data dos comentários, para propor uma abordagem de identificação do correto autor de um comentário ao se utilizar a rede neural LSTM para tratar a questão do aprendizado ao longo do tempo. Um estudo de caso foi realizado e publicado como artigo completo no SBSI 2020, contendo os resultados iniciais do projeto, os quais exploram diferentes técnicas de mineração de texto. Além disso, os resultados finais deste trabalho foram publicados como artigo completo no SBSI 2022, usando uma distribuição de dados próxima à realidade e obtendo, para 10 autores, uma acurácia na classificação entre 97% e 99,6% para todas as características e entre 100 autores todas as características atingiram mais de 70% de acurácia. |
id |
USP_95f682bf24f7aba372962a1d758cc7b3 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-07122022-220517 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Atribuição de autoria em dados temporais utilizando a rede social RedditAuthorship Attribution on temporal data using Reddit social mediaAnálise de autoriaAuthorship analysisDados TemporaisMineração de textoOnline social mediaRedes sociais onlineTemporal dataText miningA praticidade trazida pelo uso dos smartphones resultou, nos últimos anos, em uma maior interação através das redes sociais online. As redes sociais podem influenciar tanto positivamente quanto negativamente os usuários, sendo um dos impactos negativos a propagação de notícias falsas. Neste contexto, identificar a correta fonte de uma informação ou se a informação é verídica se tornam atividades extremamente relevantes. Desde 2009 o número de trabalhos envolvendo redes sociais online e análise de autoria tem aumentado. O presente projeto tem como objetivo utilizar os comentários da rede social Reddit, em conjunto com dados da data dos comentários, para propor uma abordagem de identificação do correto autor de um comentário ao se utilizar a rede neural LSTM para tratar a questão do aprendizado ao longo do tempo. Um estudo de caso foi realizado e publicado como artigo completo no SBSI 2020, contendo os resultados iniciais do projeto, os quais exploram diferentes técnicas de mineração de texto. Além disso, os resultados finais deste trabalho foram publicados como artigo completo no SBSI 2022, usando uma distribuição de dados próxima à realidade e obtendo, para 10 autores, uma acurácia na classificação entre 97% e 99,6% para todas as características e entre 100 autores todas as características atingiram mais de 70% de acurácia.The practicality brought by the use of smartphones has resulted, in recent years, in greater interaction through online social networks. Social networks can influence users both positively and negatively, one of the negative impacts is the spread of fake news. In this context, identifying the correct source of information or whether the information is true becomes extremely relevant activities. Since 2009, the number of works involving online social networks and analysis of authorship has increased. This project aims to use the comments from the Reddit social network, together with date time data from the comments, to present a model that identifies the correct author of a comment using the neural network LSTM to address the learning over time. A case study was carried out and published as a full paper at SBSI 2020, containing the initial results of the project, which explored text mining techniques. Furthermore, the final results from this project was also published as a full paper at SBSI 2022, using a data distribution more close to reality, achieving among 10 authors more than 97% of accuracy with chars feature having more than 99.6% of accuracy, among 100 authors all features achieved more than 70% of accuracy.Biblioteca Digitais de Teses e Dissertações da USPDigiampietri, Luciano AntonioCasimiro, Guilherme Ramos2022-10-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/100/100131/tde-07122022-220517/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-07122022-220517Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Atribuição de autoria em dados temporais utilizando a rede social Reddit Authorship Attribution on temporal data using Reddit social media |
title |
Atribuição de autoria em dados temporais utilizando a rede social Reddit |
spellingShingle |
Atribuição de autoria em dados temporais utilizando a rede social Reddit Casimiro, Guilherme Ramos Análise de autoria Authorship analysis Dados Temporais Mineração de texto Online social media Redes sociais online Temporal data Text mining |
title_short |
Atribuição de autoria em dados temporais utilizando a rede social Reddit |
title_full |
Atribuição de autoria em dados temporais utilizando a rede social Reddit |
title_fullStr |
Atribuição de autoria em dados temporais utilizando a rede social Reddit |
title_full_unstemmed |
Atribuição de autoria em dados temporais utilizando a rede social Reddit |
title_sort |
Atribuição de autoria em dados temporais utilizando a rede social Reddit |
author |
Casimiro, Guilherme Ramos |
author_facet |
Casimiro, Guilherme Ramos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Digiampietri, Luciano Antonio |
dc.contributor.author.fl_str_mv |
Casimiro, Guilherme Ramos |
dc.subject.por.fl_str_mv |
Análise de autoria Authorship analysis Dados Temporais Mineração de texto Online social media Redes sociais online Temporal data Text mining |
topic |
Análise de autoria Authorship analysis Dados Temporais Mineração de texto Online social media Redes sociais online Temporal data Text mining |
description |
A praticidade trazida pelo uso dos smartphones resultou, nos últimos anos, em uma maior interação através das redes sociais online. As redes sociais podem influenciar tanto positivamente quanto negativamente os usuários, sendo um dos impactos negativos a propagação de notícias falsas. Neste contexto, identificar a correta fonte de uma informação ou se a informação é verídica se tornam atividades extremamente relevantes. Desde 2009 o número de trabalhos envolvendo redes sociais online e análise de autoria tem aumentado. O presente projeto tem como objetivo utilizar os comentários da rede social Reddit, em conjunto com dados da data dos comentários, para propor uma abordagem de identificação do correto autor de um comentário ao se utilizar a rede neural LSTM para tratar a questão do aprendizado ao longo do tempo. Um estudo de caso foi realizado e publicado como artigo completo no SBSI 2020, contendo os resultados iniciais do projeto, os quais exploram diferentes técnicas de mineração de texto. Além disso, os resultados finais deste trabalho foram publicados como artigo completo no SBSI 2022, usando uma distribuição de dados próxima à realidade e obtendo, para 10 autores, uma acurácia na classificação entre 97% e 99,6% para todas as características e entre 100 autores todas as características atingiram mais de 70% de acurácia. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-07122022-220517/ |
url |
https://www.teses.usp.br/teses/disponiveis/100/100131/tde-07122022-220517/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256495330164736 |