Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-03102016-175645/ |
Resumo: | Neste trabalho, abordamos o conceito de simetria em teoria de campos, no âmbito hamiltoniano mais precisamente, sua relação com leis de conservação, conforme estabelecida pelo(s) teorema(s) de Noether. Propomos uma visão alternativa àquela normalmente usada na literatura, baseada na substituição de grupos e álgebras de Lie por grupoides e algebroides de Lie. Tradicionalmente, dado um fibrado E de configuração sobre o espaço-tempo M (cujas seções são os campos do modelo sob investigação), simetrias são implementadas pela ação de um grupo de automorfismos de E, ou seja, um subgrupo de Aut(E), no espaço Γ (E) das seções de E, exigindo-se que o funcional ação S seja invariante sob tal ação: neste caso, quando o pertinente subgrupo for de dimensão infinita, surgem graves dificuldades quando queremos tratar de questões de análise e de geometria com rigor matemático. A vantagem principal desta abordagem alternativa provém do fato de que, embora o grupo Aut(E) e, tipicamente, os subgrupos relevantes, assim como o espaço Γ (E), sejam de dimensão infinita, a sua ação é induzida por uma ação de um grupoide de Lie no fibrado pertinente, a qual envolve apenas variedades de dimensão finita e portanto não há qualquer dúvida em relação a questões tais como qual seria a topologia ou estrutura de variedade subjacente ou em qual sentido essa ação deve ser suave. Formulamos o teorema de Noether neste contexto, baseado em uma nova versão da construção da aplicação momento que a cada gerador de simetrias que associa uma (n - 1)-forma sobre J*E cujo pull-back com uma seção de J* E, que é solução das equações de movimento, produz uma (n - 1)-forma sobre o espaço-tempo, a famosa corrente de Noether, que é conservada, ou seja, fechada |
id |
USP_961d11ddd61eb968099390573b9d474e |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03102016-175645 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltonianoLie groupoids and the Noether\'s theorem in field theory in the hamiltonian approachClassical field theoryDifferential geometryGeometria diferencialGrupoides de LieLie groupoidsNoethers theoremSimetriasSymmetriesTeorema de NoetherTeoria clássica de camposNeste trabalho, abordamos o conceito de simetria em teoria de campos, no âmbito hamiltoniano mais precisamente, sua relação com leis de conservação, conforme estabelecida pelo(s) teorema(s) de Noether. Propomos uma visão alternativa àquela normalmente usada na literatura, baseada na substituição de grupos e álgebras de Lie por grupoides e algebroides de Lie. Tradicionalmente, dado um fibrado E de configuração sobre o espaço-tempo M (cujas seções são os campos do modelo sob investigação), simetrias são implementadas pela ação de um grupo de automorfismos de E, ou seja, um subgrupo de Aut(E), no espaço Γ (E) das seções de E, exigindo-se que o funcional ação S seja invariante sob tal ação: neste caso, quando o pertinente subgrupo for de dimensão infinita, surgem graves dificuldades quando queremos tratar de questões de análise e de geometria com rigor matemático. A vantagem principal desta abordagem alternativa provém do fato de que, embora o grupo Aut(E) e, tipicamente, os subgrupos relevantes, assim como o espaço Γ (E), sejam de dimensão infinita, a sua ação é induzida por uma ação de um grupoide de Lie no fibrado pertinente, a qual envolve apenas variedades de dimensão finita e portanto não há qualquer dúvida em relação a questões tais como qual seria a topologia ou estrutura de variedade subjacente ou em qual sentido essa ação deve ser suave. Formulamos o teorema de Noether neste contexto, baseado em uma nova versão da construção da aplicação momento que a cada gerador de simetrias que associa uma (n - 1)-forma sobre J*E cujo pull-back com uma seção de J* E, que é solução das equações de movimento, produz uma (n - 1)-forma sobre o espaço-tempo, a famosa corrente de Noether, que é conservada, ou seja, fechadaIn this thesis, we deal with the concept of symmetry in field theory, in the covariant hamiltonian approach more precisely, its relation with conservation laws, as established by Noethers theorem(s). We propose an alternative view to that normally used in the literature, based on replacing Lie groups and algebras by Lie groupoids and algebroids. Traditionally, given a configuration bundle E over space-time M (whose sections are the fields of the model under investigation), symmetries are implemented by the action of a group of automorphisms of E, i.e., a subgroup of Aut(E), on the space Γ (E) of sections of E, requiring the action functional S to be invariant under that action: in this case, when the pertinent subgroup has infinite dimension, serious difficulties arise when we want to deal with analytical and geometrical questions with mathematical rigor. The main advantage of this alternative approach comes from the fact that, although the group Aut(E) and, typically, the relevant subgroups, as well as the space Γ (E), are infinite-dimensional, its action is induced by the action of a Lie groupoid in the pertinent bundle, which involves only finite-dimentional manifolds and therefore there is no doubt about questions such as what should be the topology or the underlying manifold structure or in what sense this action should be smooth. We formulate the Noethers theorem in this context, based on a new version of the construction of the momentum map that associates a (n - 1)-form on J*E to each symmetries generator whose pull-back with a section of J*E, that is solution of the equations of motion, produces a (n - 1)-form on the space-time, the famous Noether current, that is conserved, i.e., closedBiblioteca Digitais de Teses e Dissertações da USPForger, Frank MichaelCosta, Bruno Tadeu2015-04-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-03102016-175645/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-03102016-175645Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano Lie groupoids and the Noether\'s theorem in field theory in the hamiltonian approach |
title |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano |
spellingShingle |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano Costa, Bruno Tadeu Classical field theory Differential geometry Geometria diferencial Grupoides de Lie Lie groupoids Noethers theorem Simetrias Symmetries Teorema de Noether Teoria clássica de campos |
title_short |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano |
title_full |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano |
title_fullStr |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano |
title_full_unstemmed |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano |
title_sort |
Grupoides de Lie e o teorema de Noether em teoria de campos no âmbito hamiltoniano |
author |
Costa, Bruno Tadeu |
author_facet |
Costa, Bruno Tadeu |
author_role |
author |
dc.contributor.none.fl_str_mv |
Forger, Frank Michael |
dc.contributor.author.fl_str_mv |
Costa, Bruno Tadeu |
dc.subject.por.fl_str_mv |
Classical field theory Differential geometry Geometria diferencial Grupoides de Lie Lie groupoids Noethers theorem Simetrias Symmetries Teorema de Noether Teoria clássica de campos |
topic |
Classical field theory Differential geometry Geometria diferencial Grupoides de Lie Lie groupoids Noethers theorem Simetrias Symmetries Teorema de Noether Teoria clássica de campos |
description |
Neste trabalho, abordamos o conceito de simetria em teoria de campos, no âmbito hamiltoniano mais precisamente, sua relação com leis de conservação, conforme estabelecida pelo(s) teorema(s) de Noether. Propomos uma visão alternativa àquela normalmente usada na literatura, baseada na substituição de grupos e álgebras de Lie por grupoides e algebroides de Lie. Tradicionalmente, dado um fibrado E de configuração sobre o espaço-tempo M (cujas seções são os campos do modelo sob investigação), simetrias são implementadas pela ação de um grupo de automorfismos de E, ou seja, um subgrupo de Aut(E), no espaço Γ (E) das seções de E, exigindo-se que o funcional ação S seja invariante sob tal ação: neste caso, quando o pertinente subgrupo for de dimensão infinita, surgem graves dificuldades quando queremos tratar de questões de análise e de geometria com rigor matemático. A vantagem principal desta abordagem alternativa provém do fato de que, embora o grupo Aut(E) e, tipicamente, os subgrupos relevantes, assim como o espaço Γ (E), sejam de dimensão infinita, a sua ação é induzida por uma ação de um grupoide de Lie no fibrado pertinente, a qual envolve apenas variedades de dimensão finita e portanto não há qualquer dúvida em relação a questões tais como qual seria a topologia ou estrutura de variedade subjacente ou em qual sentido essa ação deve ser suave. Formulamos o teorema de Noether neste contexto, baseado em uma nova versão da construção da aplicação momento que a cada gerador de simetrias que associa uma (n - 1)-forma sobre J*E cujo pull-back com uma seção de J* E, que é solução das equações de movimento, produz uma (n - 1)-forma sobre o espaço-tempo, a famosa corrente de Noether, que é conservada, ou seja, fechada |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-03102016-175645/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-03102016-175645/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256700166340608 |