Sobre um Problema de Perturbação Singular com Vários Retardamentos
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15032018-104115/ |
Resumo: | Consideremos a classe de equações diferenciais-diferenças singularmente perturbadas εx(t) = Σlr=0 αr x (t-r), ε > 0 (1ε e seu limite formal quando ε → 0: 0 = Σlr=0 α r x (t-r). (10). Utilizando um método introduzido por Carvalho [5], exibimos soluções periódicas de (1ε) e (10) e definimos hipersuperfícies de bifurcação dessas soluções no espaço dos parâmetros (α0, α<sub1, ...αl). Visando estabelecer relações entre as dinâmicas definidas por (1ε) e (10), no caso / = 2, α0 = 1 provamos que a região de estabilidade de (1ε) no espaço (α1, α2) aproxima a região de estabilidade de (10), quando ε → 0, num sentido definido precisamente no Teorema 4.1.1. |
id |
USP_acea44355b4c873a232f11e2b5bbec8d |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-15032018-104115 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Sobre um Problema de Perturbação Singular com Vários RetardamentosNot availableNão disponívelNot availableConsideremos a classe de equações diferenciais-diferenças singularmente perturbadas εx(t) = Σlr=0 αr x (t-r), ε > 0 (1ε e seu limite formal quando ε → 0: 0 = Σlr=0 α r x (t-r). (10). Utilizando um método introduzido por Carvalho [5], exibimos soluções periódicas de (1ε) e (10) e definimos hipersuperfícies de bifurcação dessas soluções no espaço dos parâmetros (α0, α<sub1, ...αl). Visando estabelecer relações entre as dinâmicas definidas por (1ε) e (10), no caso / = 2, α0 = 1 provamos que a região de estabilidade de (1ε) no espaço (α1, α2) aproxima a região de estabilidade de (10), quando ε → 0, num sentido definido precisamente no Teorema 4.1.1.We consider the class of singularly perturbed.differential-difference equations ε x(t) = Σlr=0 αr x (t-r), ε > 0 (1ε) and its formal limit as ε → 0: 0 = Σlr=0 αr x (t-r). (10). Using a method due to Carvalho [5], we exhibit periodic solutions of (1ε) and (10) and define bifurcation hypersurfaces for these solutions in the parameter space (α0, α1,...αl). Aiming to establish relations between the dynamics of (1ε) and (10) in case / = 2, α0 = 1, we prove that the stability region of (1ε) in the space (α1, α2) approaches the stability region of (10), as ε → 0, in a precise sense given in Theorem 4.1.1.Biblioteca Digitais de Teses e Dissertações da USPTáboas, Plácido ZoegaCruz, José Hilário da1998-06-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-15032018-104115/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2018-07-19T20:50:39Zoai:teses.usp.br:tde-15032018-104115Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sobre um Problema de Perturbação Singular com Vários Retardamentos Not available |
title |
Sobre um Problema de Perturbação Singular com Vários Retardamentos |
spellingShingle |
Sobre um Problema de Perturbação Singular com Vários Retardamentos Cruz, José Hilário da Não disponível Not available |
title_short |
Sobre um Problema de Perturbação Singular com Vários Retardamentos |
title_full |
Sobre um Problema de Perturbação Singular com Vários Retardamentos |
title_fullStr |
Sobre um Problema de Perturbação Singular com Vários Retardamentos |
title_full_unstemmed |
Sobre um Problema de Perturbação Singular com Vários Retardamentos |
title_sort |
Sobre um Problema de Perturbação Singular com Vários Retardamentos |
author |
Cruz, José Hilário da |
author_facet |
Cruz, José Hilário da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Táboas, Plácido Zoega |
dc.contributor.author.fl_str_mv |
Cruz, José Hilário da |
dc.subject.por.fl_str_mv |
Não disponível Not available |
topic |
Não disponível Not available |
description |
Consideremos a classe de equações diferenciais-diferenças singularmente perturbadas εx(t) = Σlr=0 αr x (t-r), ε > 0 (1ε e seu limite formal quando ε → 0: 0 = Σlr=0 α r x (t-r). (10). Utilizando um método introduzido por Carvalho [5], exibimos soluções periódicas de (1ε) e (10) e definimos hipersuperfícies de bifurcação dessas soluções no espaço dos parâmetros (α0, α<sub1, ...αl). Visando estabelecer relações entre as dinâmicas definidas por (1ε) e (10), no caso / = 2, α0 = 1 provamos que a região de estabilidade de (1ε) no espaço (α1, α2) aproxima a região de estabilidade de (10), quando ε → 0, num sentido definido precisamente no Teorema 4.1.1. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-06-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15032018-104115/ |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-15032018-104115/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256987481407488 |