Resolubilidade global para campos vetoriais no toro n-dimensional

Detalhes bibliográficos
Autor(a) principal: Gonzalez, Rafael Borro
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29092016-163857/
Resumo: Abordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada.
id USP_ae6b32aee4d100f6da612ec827db16c9
oai_identifier_str oai:teses.usp.br:tde-29092016-163857
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Resolubilidade global para campos vetoriais no toro n-dimensionalGlobal solvability for vector fields on the n-torusCampos vetoriasFourier seriesGlobal solvabilityPeriodic solutionsResolubilidade globalSérie de FourierSoluções periódicasVector fieldsAbordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada.We are concerned with the study of properties so that we can solve certain partial differential equations. We will consider equations of the form Lu = f; where we take L in some classes of vector fields on tori of dimension greater than two. This vector fields are viewed as operators acting on the space of smooth functions deffned on the torus. The main questions to study the closedness of the range of L. It is also of interest to know whe ther the range has finite codimension, as well as to study the regularity of L. The answers of these questions are connected with certain properties of the coeffcients of L; such as: Diophantine conditions; the connectedness of some sublevel sets involving primitive so fthe imaginary part of the coeffcients; the order of vanishing of each coeffcient and relations between the order of vanishing of the real and imaginary parts of each coeffcient; in addition, the number of times that the imaginary part of a coeffcient c changes sign between two consecutive zeros of c also plays a role. We characterize both global solvability and hypoellipticity for vector fields of tube type on tori of dimension greater than two, extending the results in dimension two. More over, in dimension three, we find conditions for the closedness of the range for a class of vector fields which are not of tube type. One of theese conditions is related to the well known Nirenberg-Treves condition (P). In particular,we obtain the same for a class of vector fields on the two- torus,for which the codimension of the range was largely studied.Biblioteca Digitais de Teses e Dissertações da USPBergamasco, Adalberto PanobiancoSilva, Paulo Leandro Dattori daGonzalez, Rafael Borro2015-03-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-29092016-163857/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:05:35Zoai:teses.usp.br:tde-29092016-163857Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:05:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Resolubilidade global para campos vetoriais no toro n-dimensional
Global solvability for vector fields on the n-torus
title Resolubilidade global para campos vetoriais no toro n-dimensional
spellingShingle Resolubilidade global para campos vetoriais no toro n-dimensional
Gonzalez, Rafael Borro
Campos vetorias
Fourier series
Global solvability
Periodic solutions
Resolubilidade global
Série de Fourier
Soluções periódicas
Vector fields
title_short Resolubilidade global para campos vetoriais no toro n-dimensional
title_full Resolubilidade global para campos vetoriais no toro n-dimensional
title_fullStr Resolubilidade global para campos vetoriais no toro n-dimensional
title_full_unstemmed Resolubilidade global para campos vetoriais no toro n-dimensional
title_sort Resolubilidade global para campos vetoriais no toro n-dimensional
author Gonzalez, Rafael Borro
author_facet Gonzalez, Rafael Borro
author_role author
dc.contributor.none.fl_str_mv Bergamasco, Adalberto Panobianco
Silva, Paulo Leandro Dattori da
dc.contributor.author.fl_str_mv Gonzalez, Rafael Borro
dc.subject.por.fl_str_mv Campos vetorias
Fourier series
Global solvability
Periodic solutions
Resolubilidade global
Série de Fourier
Soluções periódicas
Vector fields
topic Campos vetorias
Fourier series
Global solvability
Periodic solutions
Resolubilidade global
Série de Fourier
Soluções periódicas
Vector fields
description Abordaremos o estudo de condições para que certas equações diferenciais parciais tenham solução. Consideraremos equações do tipo Lu = f; onde tomamos L em algumas classes de campos vetoriais em toros de dimensão maior que dois. Tais campos vetoriais são operadores que agem no espaço das funções definidas no toro e que são infinitamente diferenciáveis. A principal questão é determinar quando tais operadores têm imagem fechada. Temos também interesse em saber quando que a imagem de tais operadores e um subespaço de codimensão finita, bem como estudar a regularidade de tais operadores. As respostas de tais questões envolvem certas propriedades dos coeficientes desses operadores, onde citamos: a conexidade de sub-níveis de primitivas da parte imaginária dos coeficientes; condições Diofantinas; a ordem de anulamento dos coeficientes e relações entre as ordens de anulamento das partes real e imaginária dos coeficientes; além disso, o número de vezes que a parte imaginária de um coeficiente c muda de sinal entre dois zeros consecutivos de c também desempenha um papel. Conseguimos caracterizar a resolubilidade e a hipoelíticidade global de campos vetoriais do tipo tubo em toros de dimensão maior do que dois, estendendo os resultados em dimensão dois. Depois, em dimensões, fornecemos condições que respondem sobre a imagem ser ou não fechada, para uma outra classe de campos vetoriais que não são do tipo tubo. Uma de tais condições esta relacionada com a famosa condição (P) de Nirenberg-Treves. Em particular, obtemos o mesmo para uma classe de campos vetoriais em dimensão são dois, para os quais a codimensão da imagem foi exaustivamente estudada.
publishDate 2015
dc.date.none.fl_str_mv 2015-03-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29092016-163857/
url http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29092016-163857/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257486423228416